Introduction

University of South Carolina

Introduction to Computer Architecture Fall, 2024 Mehdi Yaghouti

University of South Carolina (M. Y.)

イロト イ団ト イヨト イヨト

Textbook

Digital Design and Computer Architecture RISC-V Edition

Digital Design and Computer Architecture (RISC-V Edition) Sarah L Harris, David Harris

Further Reading/Exercises:

Computer Organization and Design RISC-V Edition: The Hardware Software Interface David A. Patterson, John L. Hennessy

イロト イポト イヨト イヨト

Assessment

• Grading:

Assessment Component	Weight
Assignments	Mandatory
Quiz 1 (Chapter 5 + Review)	30%
Quiz 2 (Chapter 6)	40%
Final (Chapter 7)	30%
Optional Projects	Extra Bonus

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

An everyday experience!

イロト イヨト イヨト イヨト

Inside the box

The main components

- Mainboard
- OPU
- Off-chip memory (DRAM)
- Storage devices
- $\bullet \ I/O \ Cards$

イロト イヨト イヨト イヨト

æ

Central Processing Unit

- Arithmetic and Logic Unit
- Control Logic
- Internal Memory
- Data path

Pentium 4 Die shot

イロン イ団 とくほとう ほんし

æ

- Silicon is abundant in nature
- Primarily found as (SiO₂) in sand
- Silicon is a semiconductor

イロト イヨト イヨト イヨト

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot

イロト イヨト イヨト イヨト

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot
 - Sliced into wafers (\leq 0.1 inches)

イロト イヨト イヨト イヨト

æ

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot
 - Sliced into wafers (≤ 0.1 inches)
 - Oxidation, Photolithography,...
 - Conductivity is altered selectively

イロト イ団ト イヨト イヨト

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot
 - Sliced into wafers (≤ 0.1 inches)
 - Oxidation, Photolithography,...
 - Conductivity is altered selectively
 - Testing

イロト イ団ト イヨト イヨト

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot
 - Sliced into wafers (\leq 0.1 inches)
 - Oxidation, Photolithography,...
 - Conductivity is altered selectively
 - Testing
 - Dicing

イロト イヨト イヨト イヨト

- Silicon is a semiconductor
- Manufacturing process
 - Silicon ingot
 - Sliced into wafers (\leq 0.1 inches)
 - Oxidation, Photolithography,...
 - Conductivity is altered selectively
 - Testing
 - Dicing
 - Packaging

イロト イ団ト イヨト イヨト

- Starts with Silicon ingot
- Silicon is a semiconductor
- Ingot sliced into wafers (\leq 0.1 inches)
- Oxidation, Photolithography, Doping...
- Conductivity is altered selectively
- More complex CPUs higher density
- SSI,MSI,LSI form $\sim 1-10^4~{\rm transistors}$
- VLSI form $\sim 10^4 10^6~{\rm transistors}$
- ULSI more than millions
- Current feature size $\sim 9nm 5nm$

MOSFETs

- MOSFETs are predominantly the building blocks of almost all digital systems
- Each MOSFET is a sandwich of a few semiconductor layers
- There are two types of MOS, pMOS and nMOS
- In digital circuits, a MOSFET behaves as a voltage-controlled switch
- The gate voltage needed to turn on the transistor is called threshold voltage
- The threshold voltage is typically about 0.3 to 0.7 V
- The size of transistors are a fraction of a micron nowadays

イロト イポト イヨト イヨト

Moore's Trend

- More complex digital systems needs more transistors
- Increasing die size decreases yield, so it is costly!
- Smaller transistors are faster and more power-efficient
- Moore described in 1965 a long-term trend: "Transistor counts double every two years"
- The trend can't last forever
- It has already slowed down for couple of reasons

イロト イヨト イヨト

The Shrinking Business

• Technological advancements continually shrinks the size of transistors

Performance

- Performance is a multi-facets measure
- Computer performance can be limited by
 - Memory
 - Hard Disk
 - Graphic system
 - Network connection
- Almost all CPUs are synchronous digital circuits
- Changes occur at clock transitions
- Clock rate is a main factor in CPU performance
- CPU performance

$$ExecutionTime = (\#Inst.) \times (CPI) \times \frac{1}{F_{clock}}$$

イロト イポト イヨト イヨト

.

Power Wall

- Power is energy per unit time
- Power consumption limits the battery life
- Digital systems draws Dynamic and Static powers
- Dynamic power is drawn for charging capacitive loads
- Charging power of a capacitor $C V_{DD}^2$
- Power Consumption

 $P_{dynamic} \propto \alpha \, C \, V_{DD}^2 \, F_{clock}$

Multi-Core Processors

- Power puts strict constraints on clock rate
- Power consumption limits the battery life
- Power is dissipated as heat
- Cooling chips can become costly
- Since 2006, the industry shifted toward multi-core processors

イロト イ団ト イヨト イヨト

Multidimensional trade-off

- **Complexity:** A CPU is a highly intricate system involving millions of transistors, intricate circuits, and numerous subsystems.
- **Cost vs. Speed**: Faster designs usually come with higher costs due to advanced components and technologies.
- **Power vs. Speed**: High-speed processors often consume more power, impacting energy efficiency.
- **Complexity vs. Cost**: More complex designs enhances performance at the cost of increase development and manufacturing costs.
- **Complexity vs. Power**: Increased complexity can lead to higher power consumption and cooling requirements

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - ヨー のへで

Abstraction to the rescue

• Abstraction: The art of hiding complexity by focusing on high-level concepts and simplifying interactions

• Principles:

- Modularity: Breaking down systems into manageable, reusable modules
- Hierarchy: Organizes components in a structured manner, from high-level to detailed
- **Regularity**: Applies consistent design patterns to maintain order and predictability
- **Discipline**: Restricting the design space in favor of simplification

Abstracted View of a Computer System

• Von Neumann's computer key components

- Central Processing Unit
- Memory
- Input Devices
- Output Devices
- Data path

イロト イヨト イヨト イヨト

.

Abstracted View of a Computer System

• Von Neumann's computer Key Components

- Central Processing Unit
 - Arithmetic Logic Unit (ALU)
 - Internal Memory
 - Control Unit
 - Datapath
- Memory
 - Primary Memory
 - Secondary Memory
- Input Devices
- Output Devices
- Data path

3

イロト イヨト イヨト イヨト

Digital Abstraction

Modeling the transistors as switches is an example of abstraction

• Logic gates are an abstraction of transistor circuits

• Binary signals are an abstraction of continuous voltages

Course Objectives

- How a program written in a high-level language (like C) will be translated to the assembly language?
- How a program written in assembly language will be represented as binary codes in machine language?
- How the architecture and micro-architecture are related?
- How a CPU executes the machine codes?
- How the micro-architecture of a CPU affects its performance?

イロト イヨト イヨト イヨト

3

Road Map

• Chapter 2,3 (Review)

- Reviewing the necessary digital design concepts
- Combinational Circuits
- Sequential Circuits

• Chapter 5

- Reviewing the necessary digital design concepts
- Introducing Arithmetic and Logical Components
- Introducing Memory Components

• Chapter 6

- Computer Architecture
- Assembly Language Programming

• Chapter 7

- Micro-Architecture
- Performance Analysis

Miscellaneous Topics

• As much as time permits

Application Software	>"hello world!"	Programs
Operating Systems		Device Drivers
Architecture		Instructions Registers
Micro- architecture		Datapaths Controllers
Digital Circuits	° D °	Adders Memories
Logic	€ € + } 0	AND Gates NOT Gates
Analog Circuits		Amplifiers Filters
Devices	-	Transistors Diodes
Physics	×	Electrons

イロト イポト イヨト イヨト

Road Map

• Chapter 2,3 (Review)

- Reviewing the necessary digital design concepts
- Combinational Circuits
- Sequential Circuits

• Chapter 5

- Introducing Arithmetic and Logical Components
- Introducing Memory Components

• Chapter 6

- Computer Architecture
- Assembly Language Programming

Chapter 7

- Micro-Architecture
- Performance Analysis

Miscellaneous Topics

• As much as time permits

Application Software	>"hello world!"	Programs
Operating Systems		Device Drivers
Architecture		Instructions Registers
Micro- architecture		Datapaths Controllers
Digital Circuits		Adders Memories
Logic		AND Gates NOT Gates
Analog Circuits		Amplifiers Filters
Devices	-	Transistors Diodes
Physics	×	Electrons

イロト イポト イヨト イヨト

Road Map

• Chapter 2,3 (Review)

- Reviewing the necessary digital design concepts
- Combinational Circuits
- Sequential Circuits

• Chapter 5

- Reviewing the necessary digital design concepts
- Introducing Arithmetic and Logical Components
- Introducing Memory Components

• Chapter 6

- Computer Architecture
- Assembly Language Programming

• Chapter 7

- Micro-Architecture
- Performance Analysis

Miscellaneous Topics

• As much as time permits

Application Software	>"hello world!"	Programs
Operating Systems		Device Drivers
Architecture		Instructions Registers
Micro- architecture		Datapaths Controllers
Digital Circuits	° D °	Adders Memories
Logic		AND Gates NOT Gates
Analog Circuits		Amplifiers Filters
Devices	-	Transistors Diodes
Physics	×	Electrons

Contact info

• Please feel free to contact me via email: Yaghouti@mailbox.sc.edu

Office hours

Fridays 9:00am - 2:00pm Room #2205, Innovation Center Building

イロン イ団 とくほとう ほんし

3