
Review on Digital Design (Combinational Circuits)

University of South Carolina

Introduction to Computer Architecture
Fall, 2024

Mehdi Yaghouti

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

1 / 52



Fundamental Logic Gates

Fundamental: AND, OR, and NOT are the core building blocks of digital logic.

Universal: They can implement all possible logical operations.

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 52



Boolean Algebra

The set of logical axioms/rules governing the manipulation binary variables.

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

3 / 52



Manipulation Rules

Primitive rules

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

4 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 52



Manipulation Rules

Theorems

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

6 / 52



Common Logic Gates

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

7 / 52



Digital Circuits

Combinational Circuits

Input terminals
Output terminals
Memoryless
No Cyclic path
Functional specification
Timing specification

Sequential Circuits

Input terminals
Output terminals
Has Memory
Synchronous/Asynchronous
Functional specification
Timing specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 52



Digital Circuits

Combinational Circuits

Input terminals
Output terminals
Memoryless
No Cyclic path
Functional specification
Timing specification

Sequential Circuits

Input terminals
Output terminals
Has Memory
Synchronous/Asynchronous
Functional specification
Timing specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 52



Combinational Circuits

Functional Specification

Circuit Diagram

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

9 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

10 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

11 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
Truth Table

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

12 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
Truth Table

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

13 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
Truth Table

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

F = ĀB̄C + ĀBC̄ +AB̄C̄ +ABC
G = ĀBC +AB̄C +ABC̄ +ABC

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

14 / 52



Combinational Circuits

Functional Specification

Circuit Diagram
Truth Table
Boolean Equation
Hardware Description Language

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

F = ĀB̄C + ĀBC̄ +AB̄C̄ +ABC
G = ĀBC +AB̄C +ABC̄ +ABC

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

15 / 52



Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

16 / 52



Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

17 / 52



Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)
=

(
Ā+A

)
BC +A

(
B̄ +B

)
C +AB

(
C̄ + C

)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

18 / 52



Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)
=

(
Ā+A

)
BC +A

(
B̄ +B

)
C +AB

(
C̄ + C

)
= BC +AC +AB

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

19 / 52



Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)
=

(
Ā+A

)
BC +A

(
B̄ +B

)
C +AB

(
C̄ + C

)
= BC +AC +AB

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

20 / 52



Hardware Description Languages

Schematic-level circuit design is labor-intensive and error-prone

Manual simplification of truth tables and FSMs is cumbersome

Started from 1990s, designers shifted to higher abstraction levels

CAD tools now optimize gates from logical functions

HDLs are used for specifications

Leading HDLs: Verilog and VHDL

SystemVerilog extends Verilog with advanced features while maintaining backward
compatibility

Two main phases:

Simulation
Testing the module in a software environment to verify correct behavior

Synthesis
Converting the high-level design into a gate-level representation
Synthesis varies by the target platform

The Best way to learn HDL is by examples

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

21 / 52



SystemVerilog

Combinational circuit as an input/output module

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

22 / 52



SystemVerilog

Declaring internal wires

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

23 / 52



SystemVerilog

Logical operation in SystemVerilog

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

24 / 52



SystemVerilog Operators

Operations precedence in SystemVerilog

What would happen if we change the order
of the two assign lines?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

25 / 52



SystemVerilog

SystemVerilog code

Synthesized circuit

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

26 / 52



SystemVerilog (Testbench)

Testbench

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

27 / 52



Seven-Segment Decoder

4-inputs 7-outputs

Each segment is only a function of 4-inputs

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

28 / 52



Seven-Segment Decoder

4-inputs 7-outputs

Each segment is only a function of 4-inputs

Sa =D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0D3 D2 D1 D0

+ D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

29 / 52



Seven-Segment Decoder

4-inputs 7-outputs

Each segment is only a function of 4-inputs

Sa =D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0D3 D2 D1 D0

+ D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

30 / 52



SystemVerilog

Bundle notation [n : 0]

always comb and case statement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

31 / 52



SystemVerilog

Testbench

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

32 / 52



Multiplexer

A N : 1 Mux chooses 1 out of N inputs

2:1 Mux as a combinational circuit

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

33 / 52



SystemVerilog

A 2 : 1 Mux can be easily implemented using ternary operator

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

34 / 52



Multiplexer

A N : 1 Mux chooses 1 out of N inputs

2 : 1 Mux as a combinational circuit

4 : 1 Mux implemented based on description

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

35 / 52



Multiplexer

A 2n : 1 Mux can be implemented as a binary tree

n cascaded layer is needed

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

36 / 52



SystemVerilog

ternary operators can be combined to implement larger Mux

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

37 / 52



Tristate Buffer

X designates an illegal or unknown logic value

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

38 / 52



Tristate Buffer

X designates an illegal or unknown logic value

Z designates a high impedance or floating terminal

X and Z are neither 0 nor 1 logical level

Tristate buffer possible output states: 1, 0, and Z

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

39 / 52



Tristate Buffer

X designates an illegal or unknown logic value

Z designates a high impedance or floating terminal

X and Z are neither 0 nor 1 logical level

Tristate buffer possible output states: 1, 0, and Z

They are commonly used for bus connections

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

40 / 52



Tristate Buffer

X designates an illegal or unknown logic value

Z designates a high impedance or floating terminal

X and Z are neither 0 nor 1 logical level

Tristate buffer possible output states: 1, 0, and Z

They are commonly used for bus connections

Mux implementation with Tristate buffers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

41 / 52



Tristate Buffer

Tristate variables must be declared as tri rather than logic

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

42 / 52



Decoder

Decodes a N -bits combination into a one-hot output

A N : 2N decoder has N inputs and 2N outputs

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

43 / 52



Decoder

Decodes a N -bits combination into a one-hot output

A N : 2N decoder has N inputs and 2N outputs

Sum-of-products implemented as a decoder
combined with an OR gate

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

44 / 52



Under the hood

Logic gates are made of transistors

CMOS is the common technology

NAND, NOR and NOT gates

Transistors have intrinsic delay and non-perfections

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

45 / 52



Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

46 / 52



Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element

Different paths, different delays

Critical path limits the speed

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

47 / 52



Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element

Different paths, different delays

Critical path limits the speed

Assuming tpd = 100ps and tcd = 60ps for each gate:

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

48 / 52



Example: MUX Timing Specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

49 / 52



Example: MUX Timing Specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

50 / 52



Example: MUX Timing Specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

51 / 52



Example: MUX Timing Specification

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

52 / 52


