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Fundamental Logic Gates

Fundamental: AND, OR, and NOT are the core building blocks of digital logic.

Universal: They can implement all possible logical operations.
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Boolean Algebra

The set of logical axioms/rules governing the manipulation binary variables.
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Manipulation Rules

Primitive rules
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Manipulation Rules

Commutativity
B • C = C •B B + C = C +B

Associativity
(B • C) •D = B • (C •D) (B + C) +D = B + (C +D)

Distributivity
(B • C) + (B •D) = B • (C +D) (B + C) • (B +D) = B + (C •D)

Covering
B • (B + C) = B B + (B • C) = B

Combining
(B • C) + (B • C) = B (B + C) • (B + C) = B

Consensus
(B • C) + (B •D) + (C •D) = (B • C) + (B •D)
(B + C) • (B +D) • (C +D) = (B + C) • (B •D)

De Morgan’s Theorem
B0 •B1 •B2 • · · · = B0 +B1 +B2 + · · ·
B0 +B1 +B2 + · · · = B0 •B1 •B2 • · · ·
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Manipulation Rules

Theorems
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Common Logic Gates
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Digital Circuits

Combinational Circuits

Input terminals
Output terminals
Memoryless
No Cyclic path
Functional specification
Timing specification

Sequential Circuits

Input terminals
Output terminals
Has Memory
Synchronous/Asynchronous
Functional specification
Timing specification
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Combinational Circuits

Functional Specification

Circuit Diagram
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Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
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Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)
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Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
Truth Table

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)
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Combinational Circuits

Functional Specification

Circuit Diagram
Boolean Equation
Truth Table

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

F = ĀB̄C + ĀBC̄ +AB̄C̄ +ABC
G = ĀBC +AB̄C +ABC̄ +ABC
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Combinational Circuits

Functional Specification

Circuit Diagram
Truth Table
Boolean Equation
Hardware Description Language

F = ABC+(A+B+C)(AB +AC +BC)
G = (AB +AC +BC)

F = ĀB̄C + ĀBC̄ +AB̄C̄ +ABC
G = ĀBC +AB̄C +ABC̄ +ABC
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Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC
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Logic Minimization / K-Maps

Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)
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Boolean Algebra as simplification rules

G = ĀBC +AB̄C +ABC̄ +ABC

=
(
ĀBC +ABC

)
+
(
AB̄C +ABC

)
+
(
ABC̄ +ABC

)
=

(
Ā+A

)
BC +A

(
B̄ +B

)
C +AB

(
C̄ + C

)
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Hardware Description Languages

Schematic-level circuit design is labor-intensive and error-prone

Manual simplification of truth tables and FSMs is cumbersome

Started from 1990s, designers shifted to higher abstraction levels

CAD tools now optimize gates from logical functions

HDLs are used for specifications

Leading HDLs: Verilog and VHDL

SystemVerilog extends Verilog with advanced features while maintaining backward
compatibility

Two main phases:

Simulation
Testing the module in a software environment to verify correct behavior

Synthesis
Converting the high-level design into a gate-level representation
Synthesis varies by the target platform

The Best way to learn HDL is by examples

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

21 / 52



SystemVerilog

Combinational circuit as an input/output module
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SystemVerilog

Declaring internal wires
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SystemVerilog

Logical operation in SystemVerilog
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SystemVerilog Operators

Operations precedence in SystemVerilog

What would happen if we change the order
of the two assign lines?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

25 / 52



SystemVerilog

SystemVerilog code

Synthesized circuit
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SystemVerilog (Testbench)

Testbench
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Seven-Segment Decoder

4-inputs 7-outputs

Each segment is only a function of 4-inputs
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Seven-Segment Decoder

4-inputs 7-outputs

Each segment is only a function of 4-inputs

Sa =D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0D3 D2 D1 D0

+ D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0 + D3 D2 D1 D0
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SystemVerilog

Bundle notation [n : 0]

always comb and case statement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

31 / 52



SystemVerilog

Testbench
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Multiplexer

A N : 1 Mux chooses 1 out of N inputs

2:1 Mux as a combinational circuit
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SystemVerilog

A 2 : 1 Mux can be easily implemented using ternary operator
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Multiplexer

A N : 1 Mux chooses 1 out of N inputs

2 : 1 Mux as a combinational circuit

4 : 1 Mux implemented based on description
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Multiplexer

A 2n : 1 Mux can be implemented as a binary tree

n cascaded layer is needed
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SystemVerilog

ternary operators can be combined to implement larger Mux
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Tristate Buffer

X designates an illegal or unknown logic value
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Tristate Buffer

X designates an illegal or unknown logic value

Z designates a high impedance or floating terminal

X and Z are neither 0 nor 1 logical level

Tristate buffer possible output states: 1, 0, and Z
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Tristate Buffer

X designates an illegal or unknown logic value

Z designates a high impedance or floating terminal

X and Z are neither 0 nor 1 logical level

Tristate buffer possible output states: 1, 0, and Z

They are commonly used for bus connections

Mux implementation with Tristate buffers
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Tristate Buffer

Tristate variables must be declared as tri rather than logic
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Decoder

Decodes a N -bits combination into a one-hot output

A N : 2N decoder has N inputs and 2N outputs
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Decoder

Decodes a N -bits combination into a one-hot output

A N : 2N decoder has N inputs and 2N outputs

Sum-of-products implemented as a decoder
combined with an OR gate
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Under the hood

Logic gates are made of transistors

CMOS is the common technology

NAND, NOR and NOT gates

Transistors have intrinsic delay and non-perfections
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Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element
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Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element

Different paths, different delays

Critical path limits the speed
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Timing Specification

Propagation and Contamination delays

We consider tpd and tcd given for each element

Different paths, different delays

Critical path limits the speed

Assuming tpd = 100ps and tcd = 60ps for each gate:
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Example: MUX Timing Specification
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