Review on Digital Design (Combinational Circuits)

University of South Carolina

Introduction to Computer Architecture Fall, 2024 Mehdi Yaghouti

University of South Carolina (M. Y.)

Fundamental Logic Gates

- Fundamental: AND, OR, and NOT are the core building blocks of digital logic.
- Universal: They can implement all possible logical operations.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のの⊙

Boolean Algebra

• The set of logical axioms/rules governing the manipulation binary variables.

	Axiom		Dual	Name
A1	$B = 0$ if $B \neq 1$	A1'	$B=1 \text{ if } B\neq 0$	Binary field
A2	$\overline{0} = 1$	A2′	$\overline{1} = 0$	NOT
A3	$0 \bullet 0 = 0$	A3′	1 + 1 = 1	AND/OR
A4	$1 \bullet 1 = 1$	A4'	0 + 0 = 0	AND/OR
A5	$0 \bullet 1 = 1 \bullet 0 = 0$	A5′	1 + 0 = 0 + 1 = 1	AND/OR

Primitive rules

	Theorem		Dual	Name
T1	$B \bullet 1 = B$	T1′	B + 0 = B	Identity
T2	$B \bullet 0 = 0$	T2′	B + 1 = 1	Null Element
Т3	$B \bullet B = B$	T3′	B + B = B	Idempotency
T4		$\overline{B} = B$		Involution
T5	$B \bullet \overline{B} = 0$	T5′	$B + \overline{B} = 1$	Complements

4/5

• Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

イロト イヨト イヨト イヨト

• Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

Associativity

$$(B \bullet C) \bullet D = B \bullet (C \bullet D) \qquad (B + C) + D = B + (C + D)$$

イロト イヨト イヨト イヨト

5 / 52

Commutativity

 $B \bullet C = C \bullet B$ B + C = C + B

Associativity

(B+C) + D = B + (C+D) $(B \bullet C) \bullet D = B \bullet (C \bullet D)$

- Distributivity
 - $(B \bullet C) + (B \bullet D) = B \bullet (C + D) \qquad (B + C) \bullet (B + D) = B + (C \bullet D)$

イロト イヨト イヨト イヨト

Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

Associativity

 $(B \bullet C) \bullet D = B \bullet (C \bullet D) \qquad (B + C) + D = B + (C + D)$

- Distributivity $(B \bullet C) + (B \bullet D) = B \bullet (C + D)$ $(B + C) \bullet (B + D) = B + (C \bullet D)$
 - Covering

$$B \bullet (B + C) = B$$
 $B + (B \bullet C) = B$

イロト イヨト イヨト イヨト

Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

Associativity

 $(B \bullet C) \bullet D = B \bullet (C \bullet D) \qquad (B + C) + D = B + (C + D)$

 $\bullet D$

5 / 52

• Distributivity

$$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$$
 $(B + C) \bullet (B + D) = B + (C \bullet C)$
• Covering

$$B \bullet (B + C) = B \qquad B + (B \bullet C) = B$$

Combining

$$(B \bullet C) + (B \bullet \overline{C}) = B$$
 $(B + C) \bullet (B + \overline{C}) = B$

Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

Associativity

 $(B \bullet C) \bullet D = B \bullet (C \bullet D) \qquad (B + C) + D = B + (C + D)$

- Distributivity $(B \bullet C) + (B \bullet D) = B \bullet (C + D)$ $(B + C) \bullet (B + D) = B + (C \bullet D)$
- Covering

$$B \bullet (B+C) = B$$
 $B + (B \bullet C) = B$

Combining

$$(B \bullet C) + (B \bullet \overline{C}) = B$$
 $(B + C) \bullet (B + \overline{C}) = B$

Consensus

$$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) = (B \bullet C) + (\overline{B} \bullet D)$$
$$(B + C) \bullet (\overline{B} + D) \bullet (C + D) = (B + C) \bullet (\overline{B} \bullet D)$$

イロト イヨト イヨト イヨト

Commutativity

$$B \bullet C = C \bullet B \qquad B + C = C + B$$

Associativity

 $(B \bullet C) \bullet D = B \bullet (C \bullet D) \qquad (B + C) + D = B + (C + D)$

• Distributivity

$$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$$
 $(B + C) \bullet (B + D) = B + (C \bullet D)$

Covering

$$B \bullet (B+C) = B$$
 $B + (B \bullet C) = B$

Combining

$$(B \bullet C) + (B \bullet \overline{C}) = B$$
 $(B + C) \bullet (B + \overline{C}) = B$

Consensus

$$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) = (B \bullet C) + (\overline{B} \bullet D)$$
$$(B + C) \bullet (\overline{B} + D) \bullet (C + D) = (B + C) \bullet (\overline{B} \bullet D)$$

• De Morgan's Theorem

$$\overline{B_0 \bullet B_1 \bullet B_2 \bullet \cdots} = \overline{B_0} + \overline{B_1} + \overline{B_2} + \cdots$$
$$\overline{B_0 + B_1 + B_2 + \cdots} = \overline{B_0} \bullet \overline{B_1} \bullet \overline{B_2} \bullet \cdots$$

< ∃ >

• Theorems

	Theorem		Dual	Name
T6	$B \bullet C = C \bullet B$	T6′	B + C = C + B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	T7′	(B + C) + D = B + (C + D)	Associativity
Т8	$(B \bullet C) + (B \bullet D) = B \bullet (C + D)$	T8′	$(B+C) \bullet (B+D) = B + (C \bullet D)$	Distributivity
Т9	$B \bullet (B + C) = B$	T9′	$B + (B \bullet C) = B$	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	T10′	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D)$ $= (B \bullet C) + (\overline{B} \bullet D)$	T11′	$(B + C) \bullet (\overline{B} + D) \bullet (C + D)$ = $(B + C) \bullet (\overline{B} + D)$	Consensus
T12	$\overline{B_0 \bullet B_1 \bullet B_2 \dots} = (\overline{B}_0 + \overline{B}_1 + \overline{B}_2 \dots)$	T12′	$\overline{B_0 + B_1 + B_2 \dots} = (\overline{B}_0 \bullet \overline{B}_1 \bullet \overline{B}_2 \dots)$	De Morgan's Theorem

Common Logic Gates

Digital Circuits

- Combinational Circuits
 - Input terminals
 - Output terminals
 - Memoryless
 - No Cyclic path
 - Functional specification
 - Timing specification

イロト イヨト イヨト イヨト

Digital Circuits

- Combinational Circuits
 - Input terminals
 - Output terminals
 - Memoryless
 - No Cyclic path
 - Functional specification
 - Timing specification

Sequential Circuits

- Input terminals
- Output terminals
- Has Memory
- Synchronous/Asynchronous
- Functional specification
- Timing specification

- Functional Specification
 - Circuit Diagram

イロト イヨト イヨト イヨト

- Functional Specification
 - Circuit Diagram
 - Boolean Equation

イロト イヨト イヨト イヨト

- Functional Specification
 - Circuit Diagram
 - Boolean Equation

イロト イヨト イヨト イヨト

$$F = ABC + (A + B + C)(\overline{AB + AC + BC})$$

$$G = (AB + AC + BC)$$

- Functional Specification
 - Circuit Diagram
 - Boolean Equation
 - Truth Table

$$F = ABC + (A + B + C)(\overline{AB + AC + BC})$$

$$G = (AB + AC + BC)$$

イロト イヨト イヨト イヨト

- Functional Specification
 - Circuit Diagram
 - Boolean Equation
 - Truth Table

$$F = ABC + (A + B + C)(\overline{AB + AC + BC})$$

$$G = (AB + AC + BC)$$

A	В	с	G	F
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Functional Specification
 - Circuit Diagram
 - Boolean Equation
 - Truth Table

$$F = ABC + (A + B + C)(\overline{AB + AC + BC})$$

$$G = (AB + AC + BC)$$

$$\begin{split} F &= \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC\\ G &= \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC \end{split}$$

Α	В	с	G	F
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- Functional Specification
 - Circuit Diagram
 - Truth Table
 - Boolean Equation
 - Hardware Description Language

$$F = ABC + (A + B + C)(\overline{AB + AC + BC})$$

$$G = (AB + AC + BC)$$

$$\begin{split} F &= \bar{A}\bar{B}C + \bar{A}B\bar{C} + A\bar{B}\bar{C} + ABC\\ G &= \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC \end{split}$$

A	В	с	G	F
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

▲□▶▲圖▶▲圖▶▲圖▶ 圖 少久(

• Boolean Algebra as simplification rules

$$G = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

イロト イヨト イヨト イヨト

• Boolean Algebra as simplification rules

$$G = \bar{A}BC + A\bar{B}C + AB\bar{C} + ABC$$

= $(\bar{A}BC + ABC) + (A\bar{B}C + ABC) + (AB\bar{C} + ABC)$

イロト イヨト イヨト イヨト

• Boolean Algebra as simplification rules

$$G = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

= $(\overline{ABC} + ABC) + (A\overline{BC} + ABC) + (AB\overline{C} + ABC)$
= $(\overline{A} + A)BC + A(\overline{B} + B)C + AB(\overline{C} + C)$

イロト イヨト イヨト イヨト

• Boolean Algebra as simplification rules

$$G = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

= $(\overline{A}BC + ABC) + (A\overline{B}C + ABC) + (AB\overline{C} + ABC)$
= $(\overline{A} + A)BC + A(\overline{B} + B)C + AB(\overline{C} + C)$
= $BC + AC + AB$

イロト イヨト イヨト イヨト

• Boolean Algebra as simplification rules

$$G = \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$

= $(\overline{ABC} + ABC) + (A\overline{BC} + ABC) + (AB\overline{C} + ABC)$
= $(\overline{A} + A) BC + A (\overline{B} + B) C + AB (\overline{C} + C)$
= $BC + AC + AB$

A	В	c	G
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

イロト イヨト イヨト イヨト

Hardware Description Languages

- Schematic-level circuit design is labor-intensive and error-prone
- Manual simplification of truth tables and FSMs is cumbersome
- Started from 1990s, designers shifted to higher abstraction levels
- CAD tools now optimize gates from logical functions
- HDLs are used for specifications
- Leading HDLs: Verilog and VHDL
- SystemVerilog extends Verilog with advanced features while maintaining backward compatibility
- Two main phases:
 - Simulation
 - Testing the module in a software environment to verify correct behavior
 - Synthesis
 - Converting the high-level design into a gate-level representation
 - Synthesis varies by the target platform
- The Best way to learn HDL is by examples

イロト イヨト イヨト イヨト

• Combinational circuit as an input/output module

endmodule

endmodule

イロト イヨト イヨト イヨト

.

Logical operation in SystemVerilog

```
module comb circuit (
                       input logic a, b, c,
                       output logic f, g );
  logic w1, w2, w3, w4;
  assign w1 = a & b;
                       // AND operation
  assign w2 = a & c;
                      // AND operation
  assign w3 = b & c;
                       // AND operation
  assign w4 = w1 | w2;
                       // OR operation
  assign q = w4 | w3;
                        // OR operation
  logic w5, w6, w7, w8, w9;
  assign w5 = a & b & c: // AND operation
  assign w6 = a | b: // OR operation
  assign w7 = w6 | c: // OR operation
  assign w8 = ~g; // NOT operation
  assign w9 = w7 & w8: // AND operation
  assign f = w5 | w9: // OR operation
endmodule
```


SystemVerilog Operators

• Operations precedence in SystemVerilog
<pre>module comb_circuit (input logic a, b, c, output logic f, g);</pre>
assigng = (a & b) (a & c) (b & c); assignf = (a & b & c) ((a b c) & ~g);
endmodule

Op	Meaning
~	NOT
*,/,%	MUL, DIV, MOD
+, -	PLUS, MINUS
<<, >>	Logical Left/Right Shift
<<<, >>>	Arithmetic Left/Right Shift
<, <=, >, >=	Relative Comparison
==, !=	Equality Comparison
&,~&	AND, NAND
^,~^	XOR, XNOR
,~	OR, NOR
?:	Conditional

• What would happen if we change the order of the two assign lines?

▲□▶ ▲圖▶ ▲目▶ ▲目▶ - 目 - のの⊙

• SystemVerilog code

endmodule

SystemVerilog (Testbench)

Testbench

```
c=θ
`timescale lns/lns
                                                      f =0
module comb circuit tb;
                                                      a =0
    // Inputs
    logic a. b. c:
   // Outputs
   logic f. g:
   // Instantiate the Unit Under Test (DUT)
    comb circuit dut (.a(a), .b(b), .c(c), .f(f), .g(g) );
    // Test sequence
    initial begin
       // Setup waveform dumping
       $dumpfile("comb circuit.vcd"); // Name of the VCD file
       $dumpvars(0, comb circuit tb); // Dump all variables in the testbench
       // Display the header
       $display("A B C | F G");
       $display("-----");
       // Apply test vectors using a loop
        for (int i = 0; i < 8; i++) begin
            \{a, b, c\} = i:
            #10 $display("%b %b %b | %b %b", a, b, c, f, q);
        end
        // End simulation
        $stop;
```

Signals Waves Time a=0 b=0

endmodule

3

Seven-Segment Decoder

- 4-inputs 7-outputs
- Each segment is only a function of 4-inputs

0 1	2	3	4	5	6	7 8	9
$D_{3:0}$	Sa	S_b	Sc	S_d	Se	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

28 / 52

Seven-Segment Decoder

- 4-inputs 7-outputs
- Each segment is only a function of 4-inputs

$$S_a = \overline{D_3} \overline{D_2} \overline{D_1} \overline{D_0} + \overline{D_3} \overline{D_2} D_1 \overline{D_0} + \overline{D_3} \overline{D_2} D_1 \overline{D_0} + \overline{D_3} \overline{D_2} D_1 D_0 \overline{D_3} D_2 \overline{D_1} D_0 \\ + \overline{D_3} D_2 D_1 \overline{D_0} + \overline{D_3} D_2 D_1 D_0 + D_3 \overline{D_2} \overline{D_1} \overline{D_0} + D_3 \overline{D_2} \overline{D_1} D_0$$

									\Box
0	1	2	3	4	5	6	7	8	9

D _{3:0}	Sa	S_b	Sc	S_d	Se	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

<ロト < 部 ト < 目 ト < 目 ト 、 目 の Q (C)</p>

29 / 52

University of South Carolina (M. Y.)

Seven-Segment Decoder

- 4-inputs 7-outputs
- Each segment is only a function of 4-inputs

$$S_{a} = \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, D_{1} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, D_{1} \, D_{0} \\ + \overline{D_{3}} \, D_{2} \, D_{1} \, \overline{D_{0}} + \overline{D_{3}} \, D_{2} \, D_{1} \, D_{0} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, D_{2} \, D_{1} \, \overline{D_{0}} + \overline{D_{3}} \, D_{2} \, D_{1} \, D_{0} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, D_{0} \\ + \overline{D_{3}} \, D_{2} \, D_{1} \, \overline{D_{0}} + \overline{D_{3}} \, D_{2} \, D_{1} \, D_{0} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, D_{0} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, D_{0} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + D_{3} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{2}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{1}} \, \overline{D_{0}} \right \\ + \overline{D_{3}} \, \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{1}} \, \overline{D_{0}} + \overline{D_{1}} \, \overline{D_{0}} \right \right$$

\square		\square	\square	\square	[]		\square	\square	\square
0	1	2	3	4	5	6	7	8	9

D _{3:0}	Sa	S_b	Sc	S_d	Se	S_f	S_g
0000	1	1	1	1	1	1	0
0001	0	1	1	0	0	0	0
0010	1	1	0	1	1	0	1
0011	1	1	1	1	0	0	1
0100	0	1	1	0	0	1	1
0101	1	0	1	1	0	1	1
0110	1	0	1	1	1	1	1
0111	1	1	1	0	0	0	0
1000	1	1	1	1	1	1	1
1001	1	1	1	0	0	1	1
others	0	0	0	0	0	0	0

イロト イヨト イヨト イヨト

æ

30 / 5

- Bundle notation [n : 0]
- always_comb and case statement

endmodule

<四><日><四><日><日><日><日><日<<00</br>

Testbench

```
`timescale 1ns/1ps
                                                                                  Time
                                                                                          | Digit | Segments
module seven segments decoder tb:
    logic [3:0] digit: // 4-bit input
                                                                                                     0111111
                                                                                    10ns
                                                                                              0
    logic [6:0] segments: // 7-segment output
                                                                                   20ns
                                                                                                     0000110
                                                                                    30ns
                                                                                                     1011011
   seven seaments decoder dut (
       .digit(digit).
                                                                                   40ns
                                                                                                     1001111
                                                                                   50ns
                                                                                              4
                                                                                                   | 1100110
       .segments(segments)
                                                                                   60ns
                                                                                                   | 1101101
    initial begin
                                                                                   70ns
                                                                                              б
                                                                                                   | 1111101
       $dumpfile("seven seament decoder.vcd"):
                                                                                   80ns
                                                                                                     0000111
       $dumpvars(0, seven segments decoder tb);
                                                                                   90ns
                                                                                              8
                                                                                   100ns
                                                                                              9
                                                                                                     1100111
       $display("Time | Digit | Segments");
                                                                                  110ns
                                                                                             10
                                                                                                     0000000
       $display("-----");
       for (int i = 0; i < 10; i++) begin
           digit = i;
           #10;
           $display("%0dns | %0d | %b", $time, digit, segments);
       end
       digit = 4'b1010; // Invalid input (A)
       #10;
       $display("%0dns | %0d | %b", $time, digit, segments);
       $stop;
endmodule
                    Signals
                                      Waves
                                                                                                 100 ns
```


USC

Multiplexer

- $\bullet~{\rm A}~N:1$ Mux chooses 1 out of N inputs
- 2:1 Mux as a combinational circuit

• A 2 : 1 Mux can be easily implemented using *ternary operator*

イロン イ団 とくほとう ほんし

.

Multiplexer

- A N:1 Mux chooses 1 out of N inputs
- 2:1 Mux as a combinational circuit
- 4:1 Mux implemented based on description

□ ▶ < ⊕
 35 / 52

Multiplexer

- A $2^n: 1$ Mux can be implemented as a binary tree
- n cascaded layer is needed

イロト イ団ト イヨト イヨト

36 / 52

• ternary operators can be combined to implement larger Mux

endmodule

イロン イ団 とくほとう ほんし

• X designates an illegal or unknown logic value

- $\bullet~X$ designates an illegal or unknown logic value
- $\bullet~Z$ designates a high impedance or floating terminal
- $\bullet~X$ and Z are neither $0~{\rm nor}~1$ logical level
- $\bullet\,$ Tristate buffer possible output states: 1, 0, and Z

<四><日><四><日><日><日><日><日<<00</br>

.

- $\bullet~X$ designates an illegal or unknown logic value
- $\bullet~Z$ designates a high impedance or floating terminal
- $\bullet~X$ and Z are neither $0~{\rm nor}~1$ logical level
- Tristate buffer possible output states: 1, 0, and Z
- They are commonly used for bus connections

- X designates an illegal or unknown logic value
- Z designates a high impedance or floating terminal
- X and Z are neither 0 nor 1 logical level
- $\bullet\,$ Tristate buffer possible output states: 1, 0, and Z
- They are commonly used for bus connections
- Mux implementation with Tristate buffers

41 / 52

• Tristate variables must be declared as tri rather than logic

endmodule

イロト イポト イヨト イヨト

Decoder

- Decodes a N-bits combination into a one-hot output
- $\bullet~\mathsf{A}~N:2^N$ decoder has N inputs and 2^N outputs

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Decoder

- $\bullet\,$ Decodes a N-bits combination into a one-hot output
- A $N: 2^N$ decoder has N inputs and 2^N outputs
- Sum-of-products implemented as a decoder combined with an OR gate

A_1	A_0	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

44 / 52

Under the hood

- Logic gates are made of transistors
- CMOS is the common technology
- NAND, NOR and NOT gates
- Transistors have intrinsic delay and non-perfections

イロト イヨト イヨト

Timing Specification

- Propagation and Contamination delays
- $\bullet~\mbox{We consider}~t_{pd}$ and t_{cd} given for each element

イロト イヨト イヨト イヨト

Timing Specification

- Propagation and Contamination delays
- We consider t_{pd} and t_{cd} given for each element
- Different paths, different delays
- Critical path limits the speed

æ

Timing Specification

- Propagation and Contamination delays
- We consider t_{pd} and t_{cd} given for each element
- Different paths, different delays
- Critical path limits the speed
- Assuming $t_{pd} = 100 ps$ and $t_{cd} = 60 ps$ for each gate:

= 170 ps

Gate	t_{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

æ

æ

Gate	t_{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

æ

= 125 ps

 $= t_{pTRIAY}$

= 50 ps

Gate	t_{pd} (ps)
NOT	30
2-input AND	60
3-input AND	80
4-input OR	90
tristate (A to Y)	50
tristate (enable to Y)	35

University of South Carolina (M. Y.)

= 170 ps

USC