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_________________________________________________________
Binary Number Representation

@ Decimal system:
e Base: 10
e Digits: {0,1,2,3,4,5,6,7,8,9}
o Representation of a decimal number:

T
T
T

uwin|od s,000T
uwn|o3 5,00
uwn|od 5,0
uwn|oo s,

974210=9x10°+7x 10>+ 4 x 10" + 2 x 10°
thousands_ hundreds o ones
@ Binary system:
o Base: 2
o Digits: {0,1}
o Representation of a binary number:

uwnjod 5,97
uwnjos s,
uwnjod s,

c £
33
53

10110, =1x2* +0x 22+ 1x 22+ 1 x 2"+ 0 x 2= 22,
sixteen eight four two one
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_________________________________________________________
Unsigned Binary Numbers

@ N-bit binary number can represent 2% numbers, 4Bit
N-bits Binary Decimal
Numbers Equivalents
e Minimum: 0...0 o0 0
N-bits 0001 1
o Maximum: 1...1 0010 2
. N . 0011 3
e Range: [O, 2 1] 100 T
@ Decimal to binary conversion 0101 s
e Using common powers of 2 Z::oié
1 7
1,2,4,8,16,32, 64,128,256, 512,1024, 2048,4096 — — -
o Repeated Divisions 1001 9
@ Binary to decimal conversion e 0
_ N & 1011 11
(bn - b0)y =D 10 27D T
1101 13
1110 14
1111 15

University of South Carolina (M. Y.) usc



_________________________________________________________
Hexadecimal Representation

@ Hexadecimal System: Hexadecimal Digit Binary Equivalent
0 0000
o Base: 16 oo
o Digits: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F} 5 o0
o Representation of a hexadecimal number: 3 -~
% g 4 0100
% 5 0101
; 6 0110
2ED16—2><162+EX161+DX16° =749 7 i
mohndeatiyas oo oner 8 1000
9 1001
@ Correspondence between Hex digits and 4-bits A 010

N kp _ N/4 k l

Zk:o 2°br = 016 (Zl 2 b(4*k+l)) B 1011
@ Binary to Hexadecnmal conversion ¢ 1100
o .. D 1101
o Pack each 4-bit into a hex digit . o
@ Hexadecimal to Binary conversion F 111

e Unpack each hex digits into 4-bits

DEAFDADS = 1101 1110 1010 1111 1101 1010 1101 1000
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Octal Representation

@ Octal system: Octal Digit _Binary Equivalent

o Base: 8
e Digits: {0,1,2,3,4,5,6,7}
o Representation of an octal number:

uwnjod s,

PO [N R [ (RSP N
>
3

— 2 1 0 _
3675 =3x8+ 6x8'+7x 8° =247,
three six seven
sixty fours eights ones

@ Correspondence between Octal digits and 3-bits
Zg:o 2, = sz/g 8* (Z?:O le(?»*kJrl))
@ Binary to Octal conversion
o Pack each 3-bit into a octal digit
@ Octal to Binary conversion
e Unpack each octal digits into 3-bits

(2357),= 010 011 101 111
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_________________________________________________________
Binary Addition

o Basic Rules:

e 0+0=0
e 0+1=1
e1+0=1
o 1+1=10 (0 with a carry of 1)

o Steps for Adding Two Binary Numbers:

© Aligning the Numbers

@ Adding digit by digit, starting from LSB

© Carry Over: If the sum is 2 (binary 10), carry the 1 to the next column
@ Overflow: The carry out of the leftmost digit

111

1101

+ 0101
10010

o Care must be taken as registers have constant number of bits

University of South Carolina (M. Y.) usc



———
Binary Subtraction

o Basic Rules:

e 0—-0=0
el1-0=1
e1—-1=0

e 0—1=1 (with a borrow of 1 from the next higher bit)

o Steps for Subtracting Two Binary Numbers:
© Aligning the numbers
@ Subtracting digit by digit, starting from LSB
© Borrowing: When subtracting 1 from 0, borrow 1 from the next higher bit
@ Borrow in: If a borrow needed beyond the leftmost digit, the result is negative
8"

1
0101
- 1101

0000
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———
Sign/Magnitude Number System

@ Sign/Magpnitude:
e Sign bit: Most significant bit

+ =0
- —1
Example:

+23 = 00010111
—23 = 10010111 (sign/magnitude representation)

o Spans the range [— (27! — 1) 27! —1]

e Ordinary addition doesn’t work on sign included representation
e Zero has two representations +0, —0

e Troublesome to use in fast arithmetic circuits
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———
Two's Complement Number System

——

@ Two’s Complement system:
o N-bits Two's complement representation

N—-2 Decimal Twos Complement
N-1 Z k R ion| R i
(bN_l...b0)2 = —bN2 + 2 bk kit = Lt =
k=0 +7 0111
+6 0110
e Spans the asymmetric range [— 2" ~! 2871 — 1] " Tt
e Ordinary addition works well on sign included +4 0100
representation = o
. . . e . +2 0010
e Sign bit: Most significant bit e 0001
0 0000
+ =0 -1 1111
=2 1110
——1 = 1101
—4 1100
e Zero has only one representation -5 i
’ . —6 1010
e Two's complement is the most accepted one for = o0
fast arithmetic circuits 8 1000
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Two's Complement System

@ Negation Rule
@ Negate all the bits
Q Add1

Example:

423 = 00010111 &% 11101000 =% 11101001 = —23

—23 = 11101001 &% 00010110 - 00010111 = +23

@ Addition/Subtraction

474+ 11 = 58 47 — 11 = 36 —474 11 = -36 —47 — 11 = —58
00101111 00101111 11010001 11010001
400001011 + 11110101 400001011 + 11110101
00111010 100100100 11011100 111000110
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Overflow

@ Unsigned Numbers

e Overflow occurs when there is a carry out of the MSB column
Example:

7T+12=19
0111

+ 1100
11011

@ Signed Numbers (Two’s complement)

o Overflow can only happen when two numbers have the same sign bit
e Overflow occurs when the result has the opposite sign bit

Example:
T+4=11 —7—4=-11
0111
40100 1001
1011 + 1100
10101
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Adder

e Half Adder: {c,,:,S} = A+ B
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________________________________________________________
Adder

Full
e Half Adder: {c,,:,S} = A+ B A
o FU" Adder: {Couh S} = A + B =+ Cin A B s _Li
cwrd U [
o Generate: G=AeB o0 0 %
1 0 1
o Propagate: P=A® B Lo 0
0 1 0
1 0 0
1 1 1
S =A®B®Cj,
Cout = AB + AC;, + BCj,
AB
C, ‘ a®b
Cin
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________________________________________________________
Adder

e Half Adder: {c,,:,S} = A+ B
o Full Adder: {cous, S} = A+ B+ cin Adder
o Generate: G=AeB A B s .
o Propagate: P=A® B o 1 : CW\‘%’L ’
o Delay: g g %

maz{2tpd_zors tpdzor + tpdor + lpdand} ? % E

Cu= AB + ACH L BC,
AB

University of South Carolina (M. Y.) usc



________________________________________________________
Adder

o Half Adder: {c,.;,S} = A+ B AZ:"
er
[*] FU" Adder: {couta S} = A + B + Cin A B
. A B S o %T‘_‘V‘i/; &
o Generate: G=AeB 0o 0 %
e Propagate: P=A® B 1 0
0 0 1
o Delay: 1o 0
max{Q tpd,:cory tpd,:tor + tpd,or + tpd,and} P '
S =A®B®Cj,
Cout = AB + ACj, + BCiy
0 tpy= tpd,or?) + tpd,and
AB
c asb
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________________________________________________________
SystemVerilog (Optional)

@ Implementation using P and G signals

module fulladder( input logic a, b, cin,
output logic s, cout ); a = cout~1

b[ >t [ cout

logic p, g; (d
grep g » e
= s
assign p=a”b; cin[ > 1

assign g=aé&b; /H :

assign s=p cin;
assign cout = g | (p & cin);
endmodule

cout~2

@ The second alternative

module fulladder( input logic a, b, cin,

; cout
output logic s, cout );

assign

s ~ (a ™ b);
assign cout

in
a &b | cin &a | cin & b;

endmodule )—D s
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_________________________________________________________
Ripple-Carry Adder

o Carry Propagate Adder (CPA): Sums N-bit inputs Adder
o Ripple-Carry Adder: Chains N full adders
i DEIay: tde'ca = Nitra

A
0
0
1
1
0
0
1
1

Hoororro ®

S =A®B®C,
Cou = AB + AC;, + BCjy

A B
N N Asi Bast Axn B Ar Bi Ay Bo
v Y \ N VA A SR VA
c Feo o Gl L j\ / VLY e
A+ N S/ T /o ci\ */c\l* n
:IN
Sa1 Sa0 S So

s
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-
Look-ahead Block

o Generate:
Bs As B A, B A B A
Gj:i = Gj + Pj Gj—l:i e

o Propagate: K I
Pj;i = Pj Pj,1 . -Pz

o Carry:
Cout = G]z + P]zczn

o Delay:
tpg = mam{tAND,tXOR}
tpgbiock = 3 (tanD + toR)

J
. ﬁ@%ﬁ

.

%
gir
3|
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Carry Look-Ahead Adder

o Generate: Gj;i = G]' + Pj Gj—l:i
o Propagate: P;,; = P; P;_... P
° Delay: tela = tpg + tpg,block + (% - 1) tand.or + ktra

B31:28 A31:28 BZ7:24 A27:24 B7:4 A7:4 B3:0 A3:O

831 28 S27:24
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Prefix Adder (Optional)

o Generate: G = Gip + P Gi—15
o Propagate: P;.; = P;.; Pr_1.;
o Delay: tpg = tpg + tpg prefic 10g2N +tx0R

‘15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘A 3‘2‘1‘0‘4‘
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e
Question

@ Compare the delays of a 64-bit ripple-carry, a 64-bit carry-lookahead with 4-bit
blocks and a 64-bit prefix adder.

Gate tpd (pS)  ted (ps)
NOT 15 10
2-input NAND 20 15
3-input NAND 30 25
2-input NOR 30 25
3-input NOR 45 35
2-input AND 30 25
3-input AND 40 30
2-input OR 40 30
3-input OR 55 45
2-input XOR 60 40
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———
SystemVerilog (Optional)

o keyword parameter
@ Using high level description we leave the implementation to the synthesizer

module adder #(parameter N = 8) ( input logic [N-1:0] a, b,
input logic cin,
output logic [N-1:0] s,
1‘hOC\& Add1

output logic cout); oo ooriso S cout
4._%[”
cn[> S N

assign {cout, s} = a + b + cin;
Tho e Addo

A[8.0] OUT[8.0]
endmodule zg"g}Dl: 2 Bis. u]’
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e
Subtraction

@ Two’s Complement
e Subtraction: A—-B=A+B+1
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Comparators

o Compares two binary inputs
@ Using XNOR to check equality AT
@ Using subtraction and check the sign bit

Equal
A B
IN-1]
e Pr D> Pr PP
1l 1L L L
=
S ) i
S S
‘\T/
m
g
5
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Multiplication
@ Binary multiplication is based on two basic operations:

o Generation of partial products

o Accumulation
@ The multiplication of two N-bits number is in general a 2/N-bits number

1101
x 1 1 1 0
0 0 0 0
11 01
11 01
+ 11 01
1011 011 0
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_________________________________________________________
Multiplication

@ Binary multiplication is based on two basic operations:

o Generation of partial products
o Accumulation

@ The multiplication of two N-bits number is a 2N-bits number in general

@ Each partial product is either zero or the multiplicand

Ar Az A A
X B3 Bz B1 Bg
A3Bo AxBy ABy AgBy
Az:B1 A.B1 AiB4 AgB4
AsB, AB, AjB, AgB,
+ AsB; A:B; A1B3 AgB3
P, Ps Ps P; P, P, P, Po
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_________________________________________________________
Array Multiplier

@ Binary multiplication is based on two basic operations:
o Generation of partial products
e Accumulation

@ The multiplication of two N-bits number is a 2N-bits number in general
@ Each partial product is either zero or the multiplicand
o Partial products can be generated by using AND gates

Az Az Aq Ao

A A A A
X Bg Bz 81 BD
AsBy ABo ABy AgBo
As:B1 AzB1 ABy AgB4
AsBy AsB, ABs AgBs
+ A3Bg AzBa A1Bg Ang
Pz Ps Ps Py P3 P2 Py Py
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———————
Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

e Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M: 110 1
Q: 1110

ACC: 000000 0 0

University of South Carolina (M. Y.) usc



Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

00000000
ACC: 000000 0 0

ACC: 000000 0 0

University of South Carolina (M. Y.) usc



Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

00011010
ACC: 000000 0 0

ACC: 0001101 0
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Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

001101 00
ACC: 00011010

ACC: 010011 10

University of South Carolina (M. Y.) usc



Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

011010200
ACC: 010011 10

Acc: 10110110
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———
Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

e Each partial product is either zero of the multiplicand

e The partial products can be accumulated incrementally
@ The process can be described with the following flowchart

M < Multiplicand
Q  « Multiplier
ACC <0
Count <~ n

ACC—ACC+M|
{c.ACC,Q} >»>1

Count < Count - 1

No

University of South Carolina (M. Y.) usc



———
Sequential Multiplier (Optional)

@ Hardware Architecure

e M holds the multplicand
o Q holds the multiplier
o A holds the partial products summation

Cd TTTTTTT )

_/
+ Control Logic

CPElTTI II I‘I/

[ T}l TTTTTTT I
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———
SystemVerilog Project: Sequential Multiplier (Optional)

@ Design a system verilog module to perform the sequential multiplication

@ Your module must have the following interface

module seq_multiplier ( dinput 1logic [15:0] M, // 16-bit multiplicand
input Tlogic [15:0] Q, // 16-bit multiplier
input Tlogic clk, // Clock signal
input Tlogic reset, // Reset signal
input Tlogic enable, // Activate/Deactivate the module
output logic [31:0] acc ):
endmodule

@ The project is optional and has extra bonus

@ The following files must be uploaded
o The multiplier module: Seq_Multiplier.sv
e Testbench: Testbench.sv
o Simulated Waveforms: Wave forms.pdf
o Comparing the sequential and array multiplier regarding the delay time and
resource requirements
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Division (Optional)

@ Binary division is based on two basic operations:

o Generation of partial remainders
o Subtraction and shifting

@ The quotient in division of two IN-bits number is in general a N-bits number

00001110

1010(1001001
-10101
10000
1010

01101

- 1010

1

00111
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________________________________________________________
Division (Optional)

@ Binary division is based on two basic operations:

o Generation of partial remainders
e Subtraction and shifting

@ The quotient in division of two N-bits number is in general a N-bits number
R «+0
for i =(N —1) to 0

00001110
R R A;
1010[10010011 <<l A
- 1010 p=r-5
10000 R
1010 ii:;
01101 s
1010
- Q; 1
00111 o
R+ R

University of South Carolina (M. Y.) usc



Array Divider (Optional)

@ Hardware implementation of binary division

o
EXS)
1
EXS
1
EXS)
1
EXS)

Q A A A A
o N N N N
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ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl
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________________________________________________________
ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl
@ An ALU performing ADD, SUB, AND and OR

ALUControl

Result

A
N N
ALUControby  Function
000 Add
001 Subtract
010 AND
011 OR

jonuoon TV

\ 011 010 001 000

|

N

ALUControlo

Result
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ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl
@ An ALU performing ADD, SUB, AND, OR and SLT

ALUControl

Result

A
Ant IN-1] N N
bBN | IN-1] ALUControly  Function
. Sump.y ALUControls
IS 000 Add
8
3 001 Subtract
3
7 010 AND
P
S 011 OR
1
s 2 101 SLT
UM pq S
J ‘

101 011
\ %—— ALUControl

1% Result
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ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl
An ALU performing ADD, SUB, AND, OR and SLT
Common flags: Negative, Zero, Carry and oVerflow
A B
Ans IN-11 N N
B[ [N-1]]
§ Sump. ALUControl;
.
‘ Sump. S

el
N \}{ N
{101 011 010 00T 000

5

N-1] N

ALUControls.o

Ve C N Z Result

University of South Carolina (M. Y.) usc

% ALUControl

Result

ALUControlyy  Function

000 Add
001 Subtract
010 AND
011 OR
101 SLT



ALU

Performs mathematical and logical operations

ALUControl specifies the function

Common Flags: N, Z, C, V

Overflow detection

Comparison depends on signed /unsigned

Comparison Signed Unsigned
= zZ z
# Z Z
< NeV C
< Z + (N&V) z+C
> Z o (N@V) ZeC
> (NeV) ©
University of South Carolina (M. Y.) usc

A B
N N

\ 4 ALUControl

ALY
N J4

Result Flags
J(2:00

At )

ALUControlyy  Function

000 Add
001 Subtract
010 AND
011 OR
101 SLT

B w

ALUControl, Sumw. ALUControl,

Cout

[ sumy,
LD

Yo4u00NTY

A\ L

{01
\

Resulty,

011

4 ALUCOontrolzo

Result



-
Shifters

o Logical left and right shifts

shamty.q
e

AT
Agp—34 <<2 34 Yag
3

A
A
Ay
A
o
o @AWy pree |
2 ] ]
£ -4z —\s
E v \é_
@ Ys Ys
shamtyo
A2
f ]
Ago-24 552 e Yy
172
As
Az
Ay
Ao ‘
[ [ [ be
I B e
- \ e o i \ = L °
E 7\ \& e e /
g 2 _'_/ B \"_1 \_'_/
KIS % = %
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Shifters

Logical shifter
Arithmetic shifter

Arithmetic shift right divides by 2

Overflow must be taken care of
N-bit shifter can be built from N, N : 1 MUXs

o
°
@ Arithmetic shift left multiplies by 2
o
o
°

shamty o

2
Aa_uﬁzz“ >>>2L1—4 Y30

110 11)
/

0 11

shamt
~]
Sto <
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———
SystemVerilog (Optional)

@ A typical ALU supporting add, sub, and, or, slt, sl1, srl
@ It has generates Zero and oVerflow signals

module ALU #(parameter N=4, M=3)
(input logic [N-1:0] a, b,
input logic [M-1:0] alucontrol,
output logic [N-1:0] result,
output logic zero, v);
logic [N:0] condinvb, sum;
logic isAddSub;

assign condinvb = alucontrol[@] ? ~b : b;

assign sum = a + condinvb + alucontrol[0];

assign isAddSub = ~alucontrol[2] & ~alucontrol[1] |
~alucontrol[1] & alucontrol[0];

always_comb
case (alucontrol)

3'b000: result = sum; // add
3'b001: result = sum; // subtract
3'b016: result = a & b; // and
3'b011l: result = a | b; // or
3'b106: result = a ~ b; // xor

3'b101: result = sum[N-1] ~ v; // slt
3'b116: result = a << b[1:0]; // sll
3'b111: result = a >> b[1:0]; // srl
default: result = 4'bx;

endcase
assign zero = (result == 32'b0);
assign v = ~(alucontrol[0] ~ a[31] ~ b[31]) & (a[31] ~ sum[31]) & isAddSub;
endmodule
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Serial-to-Parallel /Parallel-to-Serial Converters

@ Shift registers act as serial-to-parallel converters
@ The input is provided serially at S;»,
@ After N cycles, the last N inputs appear at Qo ... Qn-1

CLK

Q Q Q Qn-1
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Serial-to-Parallel /Parallel-to-Serial Converters

@ Shift registers act as serial-to-parallel converters
@ The input is provided serially at S;y,
@ After N cycles, the last N inputs appear at Qo ...Qn_1

|n out

Q Q Q@ Qui1

@ Shift registers with parallel load can act in reverse
@ The input Dg...Dn_1 is loaded in parallel
@ Takes N cycles to shift out as parallel-to-serial converter

Do D, D, Dn-1
Load I ‘ I ‘
Clk
SWHHEHH W R
1 (ﬁ 1 { 1
Qo Qq Q. Qn-1
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Counters

@ N-bit counter composed of an adder and a resettable register
There different approaches for designing various counters
One easy way is to use an adder

On each cycle, the counter adds 1 to the value stored in the register

ui
. N Qn-1:0

N,

They are commonly used for dividing the clock frequency

1
Reset

University of South Carolina (M. Y.) usc



