Number Representation and Computer Arithmetic

University of South Carolina

Introduction to Computer Architecture
Fall, 2024
Mehdi Yaghouti

Az
’_;
il

Molinaroli College of

W Engineering and Computing
UNIVERSITY OF SOUTH CAROLINA

:./;)\\

University of South Carolina (M. Y.) usc

Binary Number Representation

@ Decimal system:
e Base: 10
e Digits: {0,1,2,3,4,5,6,7,8,9}
o Representation of a decimal number:

T
T
T

uwin|od s,000T
uwn|o3 5,00
uwn|od 5,0
uwn|oo s,

974210=9x10°+7x 10>+ 4 x 10" + 2 x 10°
thousands_ hundreds o ones
@ Binary system:
o Base: 2
o Digits: {0,1}
o Representation of a binary number:

uwnjod 5,97
uwnjos s,
uwnjod s,

c £
33
53

10110, =1x2* +0x 22+ 1x 22+ 1 x 2"+ 0 x 2= 22,
sixteen eight four two one

University of South Carolina (M. Y.) usc

Unsigned Binary Numbers

@ N-bit binary number can represent 2% numbers, 4Bit
N-bits Binary Decimal
Numbers Equivalents
e Minimum: 0...0 o0 0
N-bits 0001 1
o Maximum: 1...1 0010 2
. N . 0011 3
e Range: [O, 2 1] 100 T
@ Decimal to binary conversion 0101 s
e Using common powers of 2 Z::oié
1 7
1,2,4,8,16,32, 64,128,256, 512,1024, 2048,4096 — — -
o Repeated Divisions 1001 9
@ Binary to decimal conversion e 0
_ N & 1011 11
(bn - b0)y =D 10 27D T
1101 13
1110 14
1111 15

University of South Carolina (M. Y.) usc

Hexadecimal Representation

@ Hexadecimal System: Hexadecimal Digit Binary Equivalent
0 0000
o Base: 16 oo
o Digits: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, F} 5 o0
o Representation of a hexadecimal number: 3 -~
% g 4 0100
% 5 0101
; 6 0110
2ED16—2><162+EX161+DX16° =749 7 i
mohndeatiyas oo oner 8 1000
9 1001
@ Correspondence between Hex digits and 4-bits A 010

N kp _ N/4 k l

Zk:o 2°br = 016 (Zl 2 b(4*k+l)) B 1011
@ Binary to Hexadecnmal conversion ¢ 1100
o .. D 1101
o Pack each 4-bit into a hex digit . o
@ Hexadecimal to Binary conversion F 111

e Unpack each hex digits into 4-bits

DEAFDADS = 1101 1110 1010 1111 1101 1010 1101 1000

University of South Carolina (M. Y.) usc

Octal Representation

@ Octal system: Octal Digit _Binary Equivalent

o Base: 8
e Digits: {0,1,2,3,4,5,6,7}
o Representation of an octal number:

uwnjod s,

PO [N R [(RSP N
>
3

— 2 1 0 _
3675 =3x8+ 6x8'+7x 8° =247,
three six seven
sixty fours eights ones

@ Correspondence between Octal digits and 3-bits
Zg:o 2, = sz/g 8* (Z?:O le(?»*kJrl))
@ Binary to Octal conversion
o Pack each 3-bit into a octal digit
@ Octal to Binary conversion
e Unpack each octal digits into 3-bits

(2357),= 010 011 101 111

University of South Carolina (M. Y.) usc

Binary Addition

o Basic Rules:

e 0+0=0
e 0+1=1
e1+0=1
o 1+1=10 (0 with a carry of 1)

o Steps for Adding Two Binary Numbers:

© Aligning the Numbers

@ Adding digit by digit, starting from LSB

© Carry Over: If the sum is 2 (binary 10), carry the 1 to the next column
@ Overflow: The carry out of the leftmost digit

111

1101

+ 0101
10010

o Care must be taken as registers have constant number of bits

University of South Carolina (M. Y.) usc

———
Binary Subtraction

o Basic Rules:

e 0—-0=0
el1-0=1
e1—-1=0

e 0—1=1 (with a borrow of 1 from the next higher bit)

o Steps for Subtracting Two Binary Numbers:
© Aligning the numbers
@ Subtracting digit by digit, starting from LSB
© Borrowing: When subtracting 1 from 0, borrow 1 from the next higher bit
@ Borrow in: If a borrow needed beyond the leftmost digit, the result is negative
8"

1
0101
- 1101

0000

University of South Carolina (M. Y.) usc

———
Sign/Magnitude Number System

@ Sign/Magpnitude:
e Sign bit: Most significant bit

+ =0
- —1
Example:

+23 = 00010111
—23 = 10010111 (sign/magnitude representation)

o Spans the range [— (27! — 1) 27! —1]

e Ordinary addition doesn’t work on sign included representation
e Zero has two representations +0, —0

e Troublesome to use in fast arithmetic circuits

University of South Carolina (M. Y.) usc

———
Two's Complement Number System

——

@ Two’s Complement system:
o N-bits Two's complement representation

N—-2 Decimal Twos Complement
N-1 Z k R ion| R i
(bN_l...b0)2 = —bN2 + 2 bk kit = Lt =
k=0 +7 0111
+6 0110
e Spans the asymmetric range [— 2" ~! 2871 — 1] " Tt
e Ordinary addition works well on sign included +4 0100
representation = o
. . . e . +2 0010
e Sign bit: Most significant bit e 0001
0 0000
+ =0 -1 1111
=2 1110
——1 = 1101
—4 1100
e Zero has only one representation -5 i
’ . —6 1010
e Two's complement is the most accepted one for = o0
fast arithmetic circuits 8 1000

University of South Carolina (M. Y.) usc

Two's Complement System

@ Negation Rule
@ Negate all the bits
Q Add1

Example:

423 = 00010111 &% 11101000 =% 11101001 = —23

—23 = 11101001 &% 00010110 - 00010111 = +23

@ Addition/Subtraction

474+ 11 = 58 47 — 11 = 36 —474 11 = -36 —47 — 11 = —58
00101111 00101111 11010001 11010001
400001011 + 11110101 400001011 + 11110101
00111010 100100100 11011100 111000110

University of South Carolina (M. Y.) usc

Overflow

@ Unsigned Numbers

e Overflow occurs when there is a carry out of the MSB column
Example:

7T+12=19
0111

+ 1100
11011

@ Signed Numbers (Two’s complement)

o Overflow can only happen when two numbers have the same sign bit
e Overflow occurs when the result has the opposite sign bit

Example:
T+4=11 —7—4=-11
0111
40100 1001
1011 + 1100
10101

University of South Carolina (M. Y.) usc

Adder

e Half Adder: {c,,:,S} = A+ B

University of South Carolina (M. Y.) usc

__
Adder

Full
e Half Adder: {c,,:,S} = A+ B A
o FU" Adder: {Couh S} = A + B =+ Cin A B s _Li
cwrd U [
o Generate: G=AeB o0 0 %
1 0 1
o Propagate: P=A® B Lo 0
0 1 0
1 0 0
1 1 1
S =A®B®Cj,
Cout = AB + AC;, + BCj,
AB
C, ‘ a®b
Cin

University of South Carolina (M. Y.) usc

__
Adder

e Half Adder: {c,,:,S} = A+ B
o Full Adder: {cous, S} = A+ B+ cin Adder
o Generate: G=AeB A B s .
o Propagate: P=A® B o 1 : CW\‘%’L ’
o Delay: g g %

maz{2tpd_zors tpdzor + tpdor + lpdand} ? % E

Cu= AB + ACH L BC,
AB

University of South Carolina (M. Y.) usc

__
Adder

o Half Adder: {c,.;,S} = A+ B AZ:"
er
[*] FU" Adder: {couta S} = A + B + Cin A B
. A B S o %T‘_‘V‘i/; &
o Generate: G=AeB 0o 0 %
e Propagate: P=A® B 1 0
0 0 1
o Delay: 1o 0
max{Q tpd,:cory tpd,:tor + tpd,or + tpd,and} P '
S =A®B®Cj,
Cout = AB + ACj, + BCiy
0 tpy= tpd,or?) + tpd,and
AB
c asb

University of South Carolina (M. Y.) usc

__
SystemVerilog (Optional)

@ Implementation using P and G signals

module fulladder(input logic a, b, cin,
output logic s, cout); a = cout~1

b[>t [cout

logic p, g; (d
grep g » e
= s
assign p=a”b; cin[> 1

assign g=aé&b; /H :

assign s=p cin;
assign cout = g | (p & cin);
endmodule

cout~2

@ The second alternative

module fulladder(input logic a, b, cin,

; cout
output logic s, cout);

assign

s ~ (a ™ b);
assign cout

in
a &b | cin &a | cin & b;

endmodule)—D s

rsity of South Carolina (M. Y.) usc

Ripple-Carry Adder

o Carry Propagate Adder (CPA): Sums N-bit inputs Adder
o Ripple-Carry Adder: Chains N full adders
i DEIay: tde'ca = Nitra

A
0
0
1
1
0
0
1
1

Hoororro ®

S =A®B®C,
Cou = AB + AC;, + BCjy

A B
N N Asi Bast Axn B Ar Bi Ay Bo
v Y \ N VA A SR VA
c Feo o Gl L j\ / VLY e
A+ N S/ T /o ci\ */c\l* n
:IN
Sa1 Sa0 S So

s

University of South Carolina (M. Y.) usc

-
Look-ahead Block

o Generate:
Bs As B A, B A B A
Gj:i = Gj + Pj Gj—l:i e

o Propagate: K I
Pj;i = Pj Pj,1 . -Pz

o Carry:
Cout = G]z + P]zczn

o Delay:
tpg = mam{tAND,tXOR}
tpgbiock = 3 (tanD + toR)

J
. ﬁ@%ﬁ

.

%
gir
3|

University of South Carolina (M. Y.) usc

Carry Look-Ahead Adder

o Generate: Gj;i = G]' + Pj Gj—l:i
o Propagate: P;,; = P; P;_... P
° Delay: tela = tpg + tpg,block + (% - 1) tand.or + ktra

B31:28 A31:28 BZ7:24 A27:24 B7:4 A7:4 B3:0 A3:O

831 28 S27:24

University of South Carolina (M. Y.) usc

Prefix Adder (Optional)

o Generate: G = Gip + P Gi—15
o Propagate: P;.; = P;.; Pr_1.;
o Delay: tpg = tpg + tpg prefic 10g2N +tx0R

‘15‘14‘13‘12‘11‘10‘9‘8‘7‘6‘5‘A 3‘2‘1‘0‘4‘

University of South Carolina (M. Y.) usc

e
Question

@ Compare the delays of a 64-bit ripple-carry, a 64-bit carry-lookahead with 4-bit
blocks and a 64-bit prefix adder.

Gate tpd (pS) ted (ps)
NOT 15 10
2-input NAND 20 15
3-input NAND 30 25
2-input NOR 30 25
3-input NOR 45 35
2-input AND 30 25
3-input AND 40 30
2-input OR 40 30
3-input OR 55 45
2-input XOR 60 40

ity of South Carolina (M. usc

———
SystemVerilog (Optional)

o keyword parameter
@ Using high level description we leave the implementation to the synthesizer

module adder #(parameter N = 8) (input logic [N-1:0] a, b,
input logic cin,
output logic [N-1:0] s,
1‘hOC\& Add1

output logic cout); oo ooriso S cout
4._%[”
cn[> S N

assign {cout, s} = a + b + cin;
Tho e Addo

A[8.0] OUT[8.0]
endmodule zg"g}Dl: 2 Bis. u]’

University of South Carolina (M. Y.) usc

e
Subtraction

@ Two’s Complement
e Subtraction: A—-B=A+B+1

University of South Carolina (M. Y.) usc

Comparators

o Compares two binary inputs
@ Using XNOR to check equality AT
@ Using subtraction and check the sign bit

Equal
A B
IN-1]
e Pr D> Pr PP
1l 1L L L
=
S) i
S S
‘\T/
m
g
5

University of South Carolina (M. Y.) usc

Multiplication
@ Binary multiplication is based on two basic operations:

o Generation of partial products

o Accumulation
@ The multiplication of two N-bits number is in general a 2/N-bits number

1101
x 1 1 1 0
0 0 0 0
11 01
11 01
+ 11 01
1011 011 0

University of South Carolina (M. Y.) usc

Multiplication

@ Binary multiplication is based on two basic operations:

o Generation of partial products
o Accumulation

@ The multiplication of two N-bits number is a 2N-bits number in general

@ Each partial product is either zero or the multiplicand

Ar Az A A
X B3 Bz B1 Bg
A3Bo AxBy ABy AgBy
Az:B1 A.B1 AiB4 AgB4
AsB, AB, AjB, AgB,
+ AsB; A:B; A1B3 AgB3
P, Ps Ps P; P, P, P, Po

University of South Carolina (M. Y.) usc

Array Multiplier

@ Binary multiplication is based on two basic operations:
o Generation of partial products
e Accumulation

@ The multiplication of two N-bits number is a 2N-bits number in general
@ Each partial product is either zero or the multiplicand
o Partial products can be generated by using AND gates

Az Az Aq Ao

A A A A
X Bg Bz 81 BD
AsBy ABo ABy AgBo
As:B1 AzB1 ABy AgB4
AsBy AsB, ABs AgBs
+ A3Bg AzBa A1Bg Ang
Pz Ps Ps Py P3 P2 Py Py

University of South Carolina (M. Y.) usc

———————
Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

e Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M: 110 1
Q: 1110

ACC: 000000 0 0

University of South Carolina (M. Y.) usc

Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

00000000
ACC: 000000 0 0

ACC: 000000 0 0

University of South Carolina (M. Y.) usc

Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

00011010
ACC: 000000 0 0

ACC: 0001101 0

University of South Carolina (M. Y.) usc

Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

001101 00
ACC: 00011010

ACC: 010011 10

University of South Carolina (M. Y.) usc

Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

o Each partial product is either zero of the multiplicand
o The partial products can be accumulated incrementally

@ It can be best understood by an example

M:000011 01
Q: 1110

011010200
ACC: 010011 10

Acc: 10110110

University of South Carolina (M. Y.) usc

———
Sequential Multiplier (Optional)

@ Binary multiplication can be done in a sequential manner
@ Sequential multiplication is based on two observations

e Each partial product is either zero of the multiplicand

e The partial products can be accumulated incrementally
@ The process can be described with the following flowchart

M < Multiplicand
Q « Multiplier
ACC <0
Count <~ n

ACC—ACC+M|
{c.ACC,Q} >»>1

Count < Count - 1

No

University of South Carolina (M. Y.) usc

———
Sequential Multiplier (Optional)

@ Hardware Architecure

e M holds the multplicand
o Q holds the multiplier
o A holds the partial products summation

Cd TTTTTTT)

_/
+ Control Logic

CPElTTI II I‘I/

[T}l TTTTTTT I

University of South Carolina (M. Y.) usc

———
SystemVerilog Project: Sequential Multiplier (Optional)

@ Design a system verilog module to perform the sequential multiplication

@ Your module must have the following interface

module seq_multiplier (dinput 1logic [15:0] M, // 16-bit multiplicand
input Tlogic [15:0] Q, // 16-bit multiplier
input Tlogic clk, // Clock signal
input Tlogic reset, // Reset signal
input Tlogic enable, // Activate/Deactivate the module
output logic [31:0] acc):
endmodule

@ The project is optional and has extra bonus

@ The following files must be uploaded
o The multiplier module: Seq_Multiplier.sv
e Testbench: Testbench.sv
o Simulated Waveforms: Wave forms.pdf
o Comparing the sequential and array multiplier regarding the delay time and
resource requirements

University of South Carolina (M. Y.) usc

Division (Optional)

@ Binary division is based on two basic operations:

o Generation of partial remainders
o Subtraction and shifting

@ The quotient in division of two IN-bits number is in general a N-bits number

00001110

1010(1001001
-10101
10000
1010

01101

- 1010

1

00111

University of South Carolina (M. Y.) usc

__
Division (Optional)

@ Binary division is based on two basic operations:

o Generation of partial remainders
e Subtraction and shifting

@ The quotient in division of two N-bits number is in general a N-bits number
R «+0
for i =(N —1) to 0

00001110
R R A;
1010[10010011 <<l A
- 1010 p=r-5
10000 R
1010 ii:;
01101 s
1010
- Q; 1
00111 o
R+ R

University of South Carolina (M. Y.) usc

Array Divider (Optional)

@ Hardware implementation of binary division

o
EXS)
1
EXS
1
EXS)
1
EXS)

Q A A A A
o N N N N

University of South Carolina (M usc

ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl

University of South Carolina (M. Y.) usc

__
ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl
@ An ALU performing ADD, SUB, AND and OR

ALUControl

Result

A
N N
ALUControby Function
000 Add
001 Subtract
010 AND
011 OR

jonuoon TV

\ 011 010 001 000

|

N

ALUControlo

Result

University of South Carolina (M. Y.) usc

ALU

@ Performs various mathematical and logical operations
@ The desired result can be selected by ALUControl
@ An ALU performing ADD, SUB, AND, OR and SLT

ALUControl

Result

A
Ant IN-1] N N
bBN | IN-1] ALUControly Function
. Sump.y ALUControls
IS 000 Add
8
3 001 Subtract
3
7 010 AND
P
S 011 OR
1
s 2 101 SLT
UM pq S
J ‘

101 011
\ %—— ALUControl

1% Result

University of South Carolina (M. Y.) usc

ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl
An ALU performing ADD, SUB, AND, OR and SLT
Common flags: Negative, Zero, Carry and oVerflow
A B
Ans IN-11 N N
B[[N-1]]
§ Sump. ALUControl;
.
‘ Sump. S

el
N \}{ N
{101 011 010 00T 000

5

N-1] N

ALUControls.o

Ve C N Z Result

University of South Carolina (M. Y.) usc

% ALUControl

Result

ALUControlyy Function

000 Add
001 Subtract
010 AND
011 OR
101 SLT

ALU

Performs mathematical and logical operations

ALUControl specifies the function

Common Flags: N, Z, C, V

Overflow detection

Comparison depends on signed /unsigned

Comparison Signed Unsigned
= zZ z
Z Z
< NeV C
< Z + (N&V) z+C
> Z o (N@V) ZeC
> (NeV) ©
University of South Carolina (M. Y.) usc

A B
N N

\ 4 ALUControl

ALY
N J4

Result Flags
J(2:00

At)

ALUControlyy Function

000 Add
001 Subtract
010 AND
011 OR
101 SLT

B w

ALUControl, Sumw. ALUControl,

Cout

[sumy,
LD

Yo4u00NTY

A\ L

{01
\

Resulty,

011

4 ALUCOontrolzo

Result

-
Shifters

o Logical left and right shifts

shamty.q
e

AT
Agp—34 <<2 34 Yag
3

A
A
Ay
A
o
o @AWy pree |
2]]
£ -4z —\s
E v \é_
@ Ys Ys
shamtyo
A2
f]
Ago-24 552 e Yy
172
As
Az
Ay
Ao ‘
[[[be
I B e
- \ e o i \ = L °
E 7\ \& e e /
g 2 _'_/ B \"_1 _'_/
KIS % = %

of South Carolina (M

Universi

Shifters

Logical shifter
Arithmetic shifter

Arithmetic shift right divides by 2

Overflow must be taken care of
N-bit shifter can be built from N, N : 1 MUXs

o
°
@ Arithmetic shift left multiplies by 2
o
o
°

shamty o

2
Aa_uﬁzz“ >>>2L1—4 Y30

110 11)
/

0 11

shamt
~]
Sto <

University of South Carolina (M. Y.)

usc

———
SystemVerilog (Optional)

@ A typical ALU supporting add, sub, and, or, slt, sl1, srl
@ It has generates Zero and oVerflow signals

module ALU #(parameter N=4, M=3)
(input logic [N-1:0] a, b,
input logic [M-1:0] alucontrol,
output logic [N-1:0] result,
output logic zero, v);
logic [N:0] condinvb, sum;
logic isAddSub;

assign condinvb = alucontrol[@] ? ~b : b;

assign sum = a + condinvb + alucontrol[0];

assign isAddSub = ~alucontrol[2] & ~alucontrol[1] |
~alucontrol[1] & alucontrol[0];

always_comb
case (alucontrol)

3'b000: result = sum; // add
3'b001: result = sum; // subtract
3'b016: result = a & b; // and
3'b011l: result = a | b; // or
3'b106: result = a ~ b; // xor

3'b101: result = sum[N-1] ~ v; // slt
3'b116: result = a << b[1:0]; // sll
3'b111: result = a >> b[1:0]; // srl
default: result = 4'bx;

endcase
assign zero = (result == 32'b0);
assign v = ~(alucontrol[0] ~ a[31] ~ b[31]) & (a[31] ~ sum[31]) & isAddSub;
endmodule

University of Sou SC

Serial-to-Parallel /Parallel-to-Serial Converters

@ Shift registers act as serial-to-parallel converters
@ The input is provided serially at S;»,
@ After N cycles, the last N inputs appear at Qo ... Qn-1

CLK

Q Q Q Qn-1

University of South Carolina (M. Y.) usc

Serial-to-Parallel /Parallel-to-Serial Converters

@ Shift registers act as serial-to-parallel converters
@ The input is provided serially at S;y,
@ After N cycles, the last N inputs appear at Qo ...Qn_1

|n out

Q Q Q@ Qui1

@ Shift registers with parallel load can act in reverse
@ The input Dg...Dn_1 is loaded in parallel
@ Takes N cycles to shift out as parallel-to-serial converter

Do D, D, Dn-1
Load I ‘ I ‘
Clk
SWHHEHH W R
1 (ﬁ 1 { 1
Qo Qq Q. Qn-1

University of South Carolina (M. Y.) usc

Counters

@ N-bit counter composed of an adder and a resettable register
There different approaches for designing various counters
One easy way is to use an adder

On each cycle, the counter adds 1 to the value stored in the register

ui
. N Qn-1:0

N,

They are commonly used for dividing the clock frequency

1
Reset

University of South Carolina (M. Y.) usc

