Number Representation and Computer Arithmetic

University of South Carolina

Introduction to Computer Architecture Fall, 2024 Mehdi Yaghouti

Binary Number Representation

Decimal system:

- Base: 10
- Digits: $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Representation of a decimal number:

```
1's column
10's column
100's column
1000's columr
```

$9742_{10} = 9 \times 10^3$	$+7 \times 10^{2}$	+ 4 × 10 ¹	$+ 2 \times 10^{0}$
nine	seven	four	two
thousands	hundreds	tens	ones

• Binary system:

- Base: 2
- Digits: {0,1}
- Representation of a binary number:

1's column 2's column 4's column 8's column 16's column

$$10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22_{10}$$

イロト イヨト イヨト イヨト

æ

Unsigned Binary Numbers

- N-bit binary number can represent 2^N numbers,
 - Minimum: $\overbrace{0\ldots0}^{\text{N-bits}}$
 - Maximum: 1...1
 - Range: $\left[0, \ldots, 2^N 1\right]$
- Decimal to binary conversion
 - Using common powers of 2 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
 - Repeated Divisions
- Binary to decimal conversion $(b_N \dots b_0)_2 = \sum_{k=0}^N 2^k b_k$

4-Bit Binary Numbers	Decimal Equivalents
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	10
1011	11
1100	12
1101	13
1110	14
1111	15

イロト イヨト イヨト イヨト

3

Hexadecimal Representation

Hexadecimal system:

- Base: 16
- Digits: {0,1,2,3,4,5,6,7,8,9,*A*,*B*,*C*,*D*,*E*,*F*}
- Representation of a hexadecimal number:

1's column 16's column 256's columr

 $\begin{array}{c} 2ED_{16} = 2 \times 16^2 + E \times 16^1 + D \times 16^0 = 749_{10} \\ \\ two \\ two hundred fifty six's \\ sixteens \\ \end{array}$

- Correspondence between Hex digits and 4-bits $\sum_{k=0}^{N} 2^k b_k = \sum_{k=0}^{N/4} 16^k \left(\sum_{l=0}^3 2^l b_{(4*k+l)} \right)$
- Binary to Hexadecimal conversion
 - Pack each 4-bit into a hex digit
- Hexadecimal to Binary conversion
 - Unpack each hex digits into 4-bits

DEAFDAD8 = 1101 1110 1010 1111 1101 1010 1101 1000

Hexadecimal Digit	Binary Equivalent
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
А	1010
В	1011
С	1100
D	1101
Е	1110
F	1111

4/4

3

Octal Representation

- Octal system:
 - Base: 8
 - Digits: $\{0, 1, 2, 3, 4, 5, 6, 7\}$
 - Representation of an octal number:

1's column 8's column 64's column

$$367_8 = 3 \times 8^2 + 6 \times 8^1 + 7 \times 8^0 = 247_{10}$$

- Correspondence between Octal digits and 3-bits $\sum_{k=0}^{N} 2^k b_k = \sum_{k=0}^{N/3} 8^k \left(\sum_{l=0}^3 2^l b_{(3*k+l)} \right)$
- Binary to Octal conversion
 - Pack each 3-bit into a octal digit
- Octal to Binary conversion
 - Unpack each octal digits into 3-bits

$$(2357)_8 = 010 \ 011 \ 101 \ 111$$

Octal Digit	Binary Equivalent
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111
7	111

イロト イヨト イヨト イヨト

Binary Addition

• Basic Rules:

- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 10 (0 with a carry of 1)

• Steps for Adding Two Binary Numbers:

- Aligning the Numbers
- Adding digit by digit, starting from LSB
- Ocarry Over: If the sum is 2 (binary 10), carry the 1 to the next column
- Overflow: The carry out of the leftmost digit

• Care must be taken as registers have constant number of bits

-

イロト イヨト イヨト イヨト

3

Binary Subtraction

Basic Rules:

- 0 0 = 0
- 1 0 = 1
- 1 1 = 0
- 0 1 = 1 (with a borrow of 1 from the next higher bit)

• Steps for Subtracting Two Binary Numbers:

- Aligning the numbers
- O Subtracting digit by digit, starting from LSB
- **③** Borrowing: When subtracting 1 from 0, borrow 1 from the next higher bit
- O Borrow in: If a borrow needed beyond the leftmost digit, the result is negative

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ― 三 ● ○○○

Sign/Magnitude Number System

• Sign/Magnitude:

• Sign bit: Most significant bit

$$\begin{cases} + \to 0 \\ - \to 1 \end{cases}$$

Example:

+23 = 00010111 $-23 = 10010111 \qquad (sign/magnitude representation)$

- Spans the range $\left[-\left(2^{N-1}-1
 ight),2^{N-1}-1
 ight]$
- Ordinary addition doesn't work on sign included representation
- Zero has two representations +0, -0
- Troublesome to use in fast arithmetic circuits

<ロ> <四> <四> <四> <四> <四> <四</p>

University of South Carolina (M. Y.)

Two's Complement Number System

• Two's Complement system:

• N-bits Two's complement representation

$$(b_{N-1}\dots b_0)_2 = -b_N 2^{N-1} + \sum_{k=0}^{N-2} 2^k b_k$$

- $\bullet~{\rm Spans}$ the asymmetric range $\left[-\,2^{N-1},2^{N-1}-1\right]$
- Ordinary addition works well on sign included representation
- Sign bit: Most significant bit

$$\begin{cases} + \to 0 \\ - \to 1 \end{cases}$$

- Zero has only one representation
- Two's complement is the most accepted one for fast arithmetic circuits

Decimal Representation	Twos Complement Representation
+8	-
+7	0111
+6	0110
+5	0101
+4	0100
+3	0011
+2	0010
+1	0001
0	0000
-1	1111
-2	1110
-3	1101
-4	1100
-5	1011
-6	1010
-7	1001
-8	1000

9/4

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ○臣○

Two's Complement System

- Negation Rule
 - Negate all the bits
 Add 1
 - Example:

 $\begin{array}{l} +23 = 00010111 \xrightarrow{\text{negated}} 11101000 \xrightarrow{+1} 11101001 = -23 \\ -23 = 11101001 \xrightarrow{\text{negated}} 00010110 \xrightarrow{+1} 00010111 = +23 \end{array}$

Addition/Subtraction

47 + 11 = 58	47 - 11 = 36	-47 + 11 = -36	-47 - 11 = -58
00101111	00101111	11010001	11010001
+00001011	+ 11110101	+00001011	+ 11110101
00111010	100100100	11011100	111000110

Overflow

Unsigned Numbers

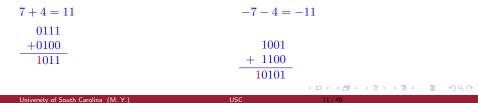
• Overflow occurs when there is a carry out of the MSB column Example:

7 + 12 = 19 0111 + 1100 11011

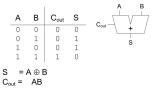
• Signed Numbers (Two's complement)

- Overflow can only happen when two numbers have the same sign bit
- Overflow occurs when the result has the opposite sign bit

Example:

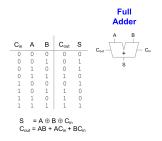


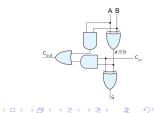
• Half Adder: $\{c_{out}, S\} = A + B$



イロン イ団 とく ヨン イヨン

- Half Adder: $\{c_{out}, S\} = A + B$
- Full Adder: $\{c_{out}, S\} = A + B + c_{in}$
- Generate: $G = A \bullet B$
- **Propagate:** $P = A \oplus B$

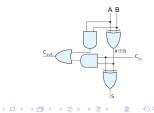




- Half Adder: $\{c_{out}, S\} = A + B$
- Full Adder: $\{c_{out}, S\} = A + B + c_{in}$
- Generate: $G = A \bullet B$
- Propagate: $P = A \oplus B$
- Delay:

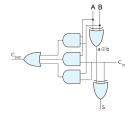
 $max\{2t_{pd_xor}, t_{pd_xor} + t_{pd_or} + t_{pd_and}\}$

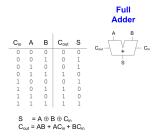
					Full Adder
Cin	A	в	Cout	s	
0	0	0	0	0	+ Cin
0	0	1	0	1	s
0	1	0	0	1	3
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	
S C			3 ⊕ C _{in} AC _{in} +	BCin	

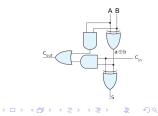


- Half Adder: $\{c_{out}, S\} = A + B$
- Full Adder: $\{c_{out}, S\} = A + B + c_{in}$
- Generate: $G = A \bullet B$
- Propagate: $P = A \oplus B$
- Delay: $max\{2 t_{pd_xor}, t_{pd_xor} + t_{pd_or} + t_{pd_and}\}$

•
$$t_{FA} = t_{pd_or3} + t_{pd_and}$$

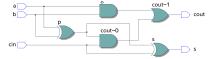


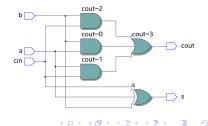




SystemVerilog (Optional)

• Implementation using P and G signals



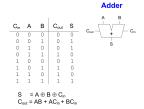


.

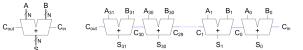
Ripple-Carry Adder

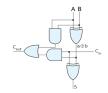
- Carry Propagate Adder (CPA): Sums N-bit inputs
- Ripple-Carry Adder: Chains N full adders

• Delay:
$$t_{pd_rca} = N_t t_{FA}$$



Full





æ

17/49

イロト イ団ト イヨト イヨト

Look-ahead Block

• Generate:

$$G_{j:i} = G_j + P_j \, G_{j-1:i}$$

• Propagate:

$$P_{j:i} = P_j P_{j-1} \dots P_i$$

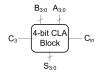
• Carry:

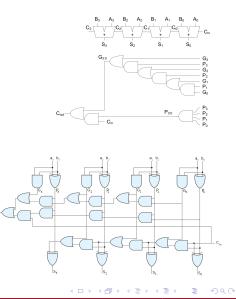
$$C_{out} = G_{j:i} + P_{j:i}C_{in}$$

• Delay:

$$t_{pg} = max\{t_{AND}, t_{XOR}\}$$

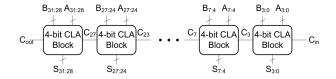
$$t_{pg,block} = 3 \ (t_{AND} + t_{OR})$$





Carry Look-Ahead Adder

- Generate: $G_{j:i} = G_j + P_j G_{j-1:i}$
- Propagate: $P_{j:i} = P_j P_{j-1} \dots P_i$
- Delay: $t_{cla} = t_{pg} + t_{pg_block} + \left(\frac{N}{k} 1\right) t_{and_or} + k t_{FA}$

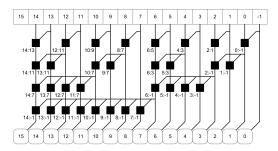


イロト イポト イヨト --

.

Prefix Adder (Optional)

- Generate: $G_{i:j} = G_{i:k} + P_{i:k} G_{k-1:j}$
- Propagate: $P_{i:j} = P_{i:k} P_{k-1:j}$
- Delay: $t_{PA} = t_{pg} + t_{pg-prefix} \log_2 N + t_{XOR}$



.

イロト イヨト イヨト イヨト

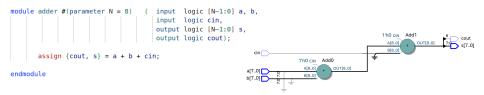
Question

• Compare the delays of a 64-bit ripple-carry, a 64-bit carry-lookahead with 4-bit blocks and a 64-bit prefix adder.

Gate	t_{pd} (ps)	t_{cd} (ps)
NOT	15	10
2-input NAND	20	15
3-input NAND	30	25
2-input NOR	30	25
3-input NOR	45	35
2-input AND	30	25
3-input AND	40	30
2-input OR	40	30
3-input OR	55	45
2-input XOR	60	40

SystemVerilog (Optional)

- keyword parameter
- Using high level description we leave the implementation to the synthesizer



æ

Subtraction

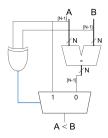
- Two's Complement
- Subtraction: $A B = A + \overline{B} + 1$

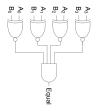
イロト イヨト イヨト イヨト

23 / 49

Comparators

- Compares two binary inputs
- Using XNOR to check equality
- Using subtraction and check the sign bit





イロト イヨト イヨト イヨト

Multiplication

- Binary multiplication is based on two basic operations:
 - Generation of partial products
 - Accumulation
- The multiplication of two N-bits number is in general a 2N-bits number

			×	_	_	0 1	_
			_	0	0	0	0
			1	1	0	1	
		1	1	0	1		
+	1	1	0	1			
1	0	1	1	0	1	1	0

イロト イヨト イヨト イヨト

.

Multiplication

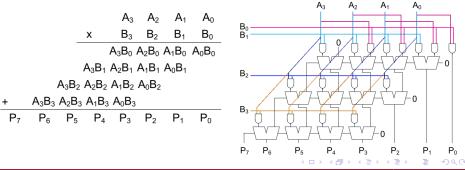
- Binary multiplication is based on two basic operations:
 - Generation of partial products
 - Accumulation
- The multiplication of two N-bits number is a 2N-bits number in general
- Each partial product is either zero or the multiplicand

イロン イ団 とく ヨン イヨン

.

Array Multiplier

- Binary multiplication is based on two basic operations:
 - Generation of partial products
 - Accumulation
- The multiplication of two N-bits number is a 2N-bits number in general
- Each partial product is either zero or the multiplicand
- Partial products can be generated by using AND gates



- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- It can be best understood by an example

ACC: 0 0 0 0 0 0 0 0 0

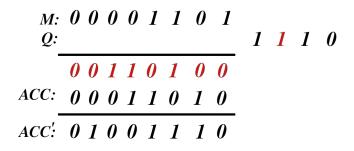
3

- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- It can be best understood by an example

イロト イヨト イヨト イヨト

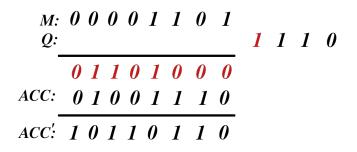
- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- It can be best understood by an example

- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - · Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- It can be best understood by an example



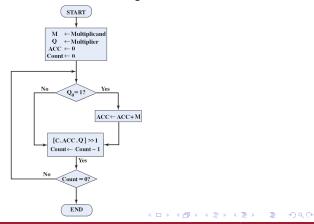
イロト 不得 トイヨト イヨト

- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - · Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- It can be best understood by an example

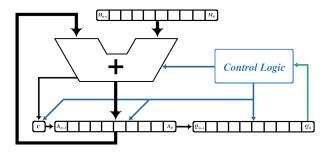


イロト 不得 トイヨト イヨト

- Binary multiplication can be done in a sequential manner
- Sequential multiplication is based on two observations
 - Each partial product is either zero of the multiplicand
 - The partial products can be accumulated incrementally
- The process can be described with the following flowchart



- Hardware Architecure
 - M holds the multplicand
 - Q holds the multiplier
 - A holds the partial products summation



SystemVerilog Project: Sequential Multiplier (Optional)

- Design a system verilog module to perform the sequential multiplication
- Your module must have the following interface

endmodule

- The project is optional and has extra bonus
- The following files must be uploaded
 - The multiplier module: *Seq_Multiplier.sv*
 - Testbench: Testbench.sv
 - Simulated Waveforms: Waveforms.pdf
 - Comparing the sequential and array multiplier regarding the delay time and resource requirements

イロト イヨト イヨト イヨト

):

3

Division (Optional)

- Binary division is based on two basic operations:
 - Generation of partial remainders
 - Subtraction and shifting
- The quotient in division of two N-bits number is in general a N-bits number

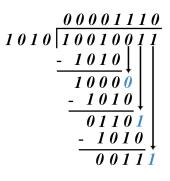
$$\begin{array}{c}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
 & - & 1 & 0 & 1 & 0 & 0 & 0 \\
 & - & 1 & 0 & 1 & 0 & 0 & 0 \\
 & - & 1 & 0 & 1 & 0 & 1 \\
 & - & 1 & 0 & 1 & 0 & 1 \\
 & - & 1 & 0 & 1 & 0 & 1 \\
 & - & 1 & 0 & 1 & 0 & 1 \\
 & 0 & 0 & 1 & 1 & 1
\end{array}$$

イロト イヨト イヨト イヨト

.

Division (Optional)

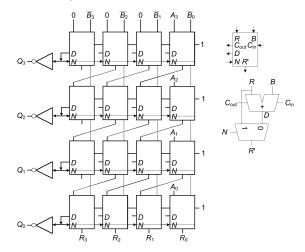
- Binary division is based on two basic operations:
 - Generation of partial remainders
 - Subtraction and shifting
- The quotient in division of two N-bits number is in general a N-bits number



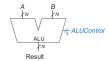
$$\begin{aligned} R' \leftarrow 0 \\ \text{for } i = (N-1) \ \text{to } 0 \\ R \leftarrow \{R' << 1, A_i\} \\ D = R - B \\ \text{if } D < 0 \\ Q_i \leftarrow 0 \\ R' \leftarrow R \\ else \\ Q_i \leftarrow 1 \\ R' \leftarrow D \\ R \leftarrow R' \end{aligned}$$

Array Divider (Optional)

• Hardware implementation of binary division



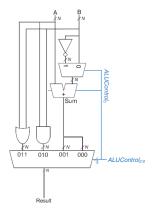
- Performs various mathematical and logical operations
- The desired result can be selected by ALUControl



イロン イ団 とくほとう ほんし

- Performs various mathematical and logical operations
- The desired result can be selected by ALUControl
- An ALU performing ADD, SUB, AND and OR

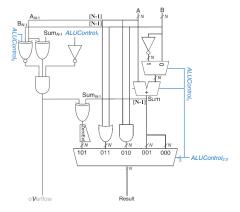
.



40 / 49

イロト イポト イヨト イヨト

- Performs various mathematical and logical operations
- The desired result can be selected by ALUControl
- An ALU performing ADD, SUB, AND, OR and SLT



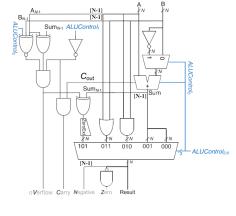
ALUControl _{2:0}	Function
000	Add
001	Subtract
010	AND
011	OR
101	SLT

æ

イロト イポト イヨト イヨト

- Performs various mathematical and logical operations
- The desired result can be selected by ALUControl
- An ALU performing ADD, SUB, AND, OR and SLT
- Common flags: Negative, Zero, Carry and oVerflow

ALUControl _{2:0}	Function
000	Add
001	Subtract
010	AND
011	OR
101	SLT



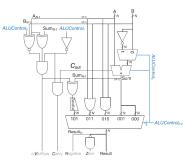
イロト イヨト イヨト

- Performs mathematical and logical operations
- ALUControl specifies the function
- Common Flags: N, Z, C, V
- Overflow detection
- Comparison depends on signed/unsigned

Comparison	Signed	Unsigned
=	Z	Z
¥	Z	Z
<	N⊕V	\overline{C}
\leq	$Z + (N \oplus V)$	$Z + \overline{C}$
>	$\overline{Z} \bullet (\overline{N \oplus V})$	$\overline{Z} \bullet C$
≥	$(\overline{N \oplus V})$	С

ALUControl _{2:0}	Function
000	Add
001	Subtract
010	AND
011	OR
101	SLT

æ

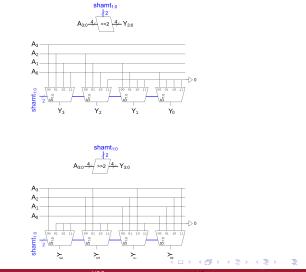


43 / 49

イロト イヨト イヨト イヨト

Shifters

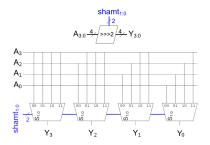
• Logical left and right shifts



USC

Shifters

- Logical shifter
- Arithmetic shifter
- Arithmetic shift left multiplies by 2
- Arithmetic shift right divides by 2
- Overflow must be taken care of
- N-bit shifter can be built from N, N:1 MUXs

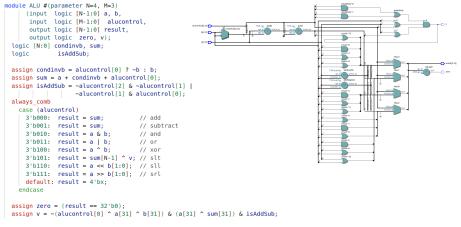


イロト イ団ト イヨト イヨト

æ

SystemVerilog (Optional)

- A typical ALU supporting add, sub, and, or, slt, sll, srl
- It has generates Zero and oVerflow signals



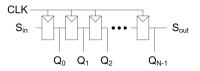
endmodule

イロト 不得 トイヨト イヨト

3

Serial-to-Parallel/Parallel-to-Serial Converters

- Shift registers act as serial-to-parallel converters
- The input is provided serially at Sin
- After N cycles, the last N inputs appear at $Q_0 \dots Q_{N-1}$

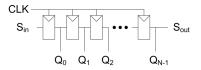


イロト イヨト イヨト イヨト

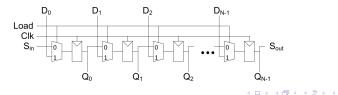
.

Serial-to-Parallel/Parallel-to-Serial Converters

- Shift registers act as serial-to-parallel converters
- The input is provided serially at S_{in}
- After N cycles, the last N inputs appear at Q₀...Q_{N-1}

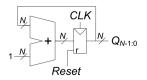


- Shift registers with parallel load can act in reverse
- The input $D_0 \dots D_{N-1}$ is loaded in parallel
- $\bullet~$ Takes N cycles to shift out as parallel-to-serial converter



Counters

- N-bit counter composed of an adder and a resettable register
- There different approaches for designing various counters
- One easy way is to use an adder
- On each cycle, the counter adds 1 to the value stored in the register
- They are commonly used for dividing the clock frequency



イロト イ団ト イヨト イヨト