
Number Representation and Computer Arithmetic

University of South Carolina

Introduction to Computer Architecture
Fall, 2024

Mehdi Yaghouti

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

1 / 49



Binary Number Representation

Decimal system:

Base: 10
Digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Representation of a decimal number:

Binary system:

Base: 2
Digits: {0, 1}
Representation of a binary number:

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 49



Unsigned Binary Numbers

N-bit binary number can represent 2N numbers,

Minimum:

N-bits︷ ︸︸ ︷
0 . . . 0

Maximum:

N-bits︷ ︸︸ ︷
1 . . . 1

Range:
[
0, . . . , 2N − 1

]
Decimal to binary conversion

Using common powers of 2
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Repeated Divisions

Binary to decimal conversion
(bN . . . b0)2 =

∑N
k=0 2

kbk

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

3 / 49



Hexadecimal Representation

Hexadecimal system:

Base: 16
Digits: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,B,C,D,E, F}
Representation of a hexadecimal number:

Correspondence between Hex digits and 4-bits∑N
k=0 2

kbk =
∑N/4

k=0 16
k
(∑3

l=0 2
lb(4∗k+l)

)
Binary to Hexadecimal conversion

Pack each 4-bit into a hex digit

Hexadecimal to Binary conversion

Unpack each hex digits into 4-bits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

4 / 49



Octal Representation

Octal system:

Base: 8
Digits: {0, 1, 2, 3, 4, 5, 6, 7}
Representation of an octal number:

Correspondence between Octal digits and 3-bits∑N
k=0 2

kbk =
∑N/3

k=0 8
k
(∑3

l=0 2
lb(3∗k+l)

)
Binary to Octal conversion

Pack each 3-bit into a octal digit

Octal to Binary conversion

Unpack each octal digits into 3-bits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 49



Binary Addition

Basic Rules:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 (0 with a carry of 1)

Steps for Adding Two Binary Numbers:
1 Aligning the Numbers
2 Adding digit by digit, starting from LSB
3 Carry Over: If the sum is 2 (binary 10), carry the 1 to the next column
4 Overflow: The carry out of the leftmost digit

Care must be taken as registers have constant number of bits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

6 / 49



Binary Subtraction

Basic Rules:

0− 0 = 0
1− 0 = 1
1− 1 = 0
0− 1 = 1 (with a borrow of 1 from the next higher bit)

Steps for Subtracting Two Binary Numbers:
1 Aligning the numbers
2 Subtracting digit by digit, starting from LSB
3 Borrowing: When subtracting 1 from 0, borrow 1 from the next higher bit
4 Borrow in: If a borrow needed beyond the leftmost digit, the result is negative

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

7 / 49



Sign/Magnitude Number System

Sign/Magnitude:

Sign bit: Most significant bit{
+ → 0

− → 1

Example:

+23 = 00010111

−23 = 10010111 (sign/magnitude representation)

Spans the range
[
−
(
2N−1 − 1

)
, 2N−1 − 1

]
Ordinary addition doesn’t work on sign included representation
Zero has two representations +0, −0
Troublesome to use in fast arithmetic circuits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 49



Two’s Complement Number System

Two’s Complement system:

N -bits Two’s complement representation

(bN−1 . . . b0)2 = −bN2N−1 +

N−2∑
k=0

2kbk

Spans the asymmetric range
[
− 2N−1, 2N−1 − 1

]
Ordinary addition works well on sign included
representation
Sign bit: Most significant bit{

+ → 0

− → 1

Zero has only one representation
Two’s complement is the most accepted one for
fast arithmetic circuits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

9 / 49



Two’s Complement System

Negation Rule
1 Negate all the bits
2 Add 1

Example:

+23 = 00010111
negated−−−−→ 11101000

+1−→ 11101001 = −23

−23 = 11101001
negated−−−−→ 00010110

+1−→ 00010111 = +23

Addition/Subtraction

47 + 11 = 58

00101111
+00001011

00111010

47− 11 = 36

00101111
+ 11110101

100100100

−47 + 11 = −36

11010001
+00001011

11011100

−47− 11 = −58

11010001
+ 11110101

111000110

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

10 / 49



Overflow

Unsigned Numbers

Overflow occurs when there is a carry out of the MSB column

Example:
7 + 12 = 19

0111
+ 1100

11011

Signed Numbers (Two’s complement)

Overflow can only happen when two numbers have the same sign bit
Overflow occurs when the result has the opposite sign bit

Example:

7 + 4 = 11

0111
+0100

1011

−7− 4 = −11

1001
+ 1100

10101

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

11 / 49



Adder

Half Adder: {cout, S} = A+B

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

12 / 49



Adder

Half Adder: {cout, S} = A+B

Full Adder: {cout, S} = A+B + cin

Generate: G = A •B
Propagate: P = A⊕B

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

13 / 49



Adder

Half Adder: {cout, S} = A+B

Full Adder: {cout, S} = A+B + cin

Generate: G = A •B
Propagate: P = A⊕B

Delay:
max{2 tpd xor, tpd xor + tpd or + tpd and}

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

14 / 49



Adder

Half Adder: {cout, S} = A+B

Full Adder: {cout, S} = A+B + cin

Generate: G = A •B
Propagate: P = A⊕B

Delay:
max{2 tpd xor, tpd xor + tpd or + tpd and}

tFA = tpd or3 + tpd and

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

15 / 49



SystemVerilog (Optional)

Implementation using P and G signals

The second alternative

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

16 / 49



Ripple-Carry Adder

Carry Propagate Adder (CPA): Sums N-bit inputs

Ripple-Carry Adder: Chains N full adders

Delay: tpd rca = Nt tFA

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

17 / 49



Look-ahead Block

Generate:
Gj:i = Gj + Pj Gj−1:i

Propagate:
Pj:i = Pj Pj−1 . . . Pi

Carry:
Cout = Gj:i + Pj:iCin

Delay:
tpg = max{tAND, tXOR}
tpg block = 3 (tAND + tOR)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

18 / 49



Carry Look-Ahead Adder

Generate: Gj:i = Gj + Pj Gj−1:i

Propagate: Pj:i = Pj Pj−1 . . . Pi

Delay: tcla = tpg + tpg block +
(
N
k − 1

)
tand or + k tFA

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

19 / 49



Prefix Adder (Optional)

Generate: Gi:j = Gi:k + Pi:k Gk−1:j

Propagate: Pi:j = Pi:k Pk−1:j

Delay: tPA = tpg + tpg prefix log2N + tXOR

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

20 / 49



Question

Compare the delays of a 64-bit ripple-carry, a 64-bit carry-lookahead with 4-bit
blocks and a 64-bit prefix adder.

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

21 / 49



SystemVerilog (Optional)

keyword parameter

Using high level description we leave the implementation to the synthesizer

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

22 / 49



Subtraction

Two’s Complement

Subtraction: A−B = A+B + 1

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

23 / 49



Comparators

Compares two binary inputs

Using XNOR to check equality

Using subtraction and check the sign bit

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

24 / 49



Multiplication

Binary multiplication is based on two basic operations:

Generation of partial products
Accumulation

The multiplication of two N -bits number is in general a 2N -bits number

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

25 / 49



Multiplication

Binary multiplication is based on two basic operations:

Generation of partial products
Accumulation

The multiplication of two N-bits number is a 2N-bits number in general

Each partial product is either zero or the multiplicand

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

26 / 49



Array Multiplier

Binary multiplication is based on two basic operations:
Generation of partial products
Accumulation

The multiplication of two N-bits number is a 2N-bits number in general
Each partial product is either zero or the multiplicand
Partial products can be generated by using AND gates

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

27 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner

Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

It can be best understood by an example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

28 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner

Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

It can be best understood by an example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

29 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner

Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

It can be best understood by an example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

30 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner

Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

It can be best understood by an example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

31 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner

Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

It can be best understood by an example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

32 / 49



Sequential Multiplier (Optional)

Binary multiplication can be done in a sequential manner
Sequential multiplication is based on two observations

Each partial product is either zero of the multiplicand
The partial products can be accumulated incrementally

The process can be described with the following flowchart

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

33 / 49



Sequential Multiplier (Optional)

Hardware Architecure

M holds the multplicand
Q holds the multiplier
A holds the partial products summation

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

34 / 49



SystemVerilog Project: Sequential Multiplier (Optional)

Design a system verilog module to perform the sequential multiplication

Your module must have the following interface

The project is optional and has extra bonus

The following files must be uploaded

The multiplier module: Seq Multiplier.sv
Testbench: Testbench.sv
Simulated Waveforms: Waveforms.pdf
Comparing the sequential and array multiplier regarding the delay time and
resource requirements

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

35 / 49



Division (Optional)

Binary division is based on two basic operations:

Generation of partial remainders
Subtraction and shifting

The quotient in division of two N -bits number is in general a N -bits number

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

36 / 49



Division (Optional)

Binary division is based on two basic operations:

Generation of partial remainders
Subtraction and shifting

The quotient in division of two N -bits number is in general a N -bits number

R′ ← 0

for i =(N − 1) to 0

R← {R′ << 1, Ai}
D = R−B

if D < 0

Qi ← 0

R′ ← R

else

Qi ← 1

R′ ← D

R← R′

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

37 / 49



Array Divider (Optional)

Hardware implementation of binary division

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

38 / 49



ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

39 / 49



ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl

An ALU performing ADD, SUB, AND and OR

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

40 / 49



ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl

An ALU performing ADD, SUB, AND, OR and SLT

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

41 / 49



ALU

Performs various mathematical and logical operations

The desired result can be selected by ALUControl

An ALU performing ADD, SUB, AND, OR and SLT

Common flags: Negative, Zero, Carry and oVerflow

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

42 / 49



ALU

Performs mathematical and logical operations

ALUControl specifies the function

Common Flags: N, Z, C, V

Overflow detection

Comparison depends on signed/unsigned

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

43 / 49



Shifters

Logical left and right shifts

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

44 / 49



Shifters
Logical shifter

Arithmetic shifter

Arithmetic shift left multiplies by 2

Arithmetic shift right divides by 2

Overflow must be taken care of

N-bit shifter can be built from N , N : 1 MUXs

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

45 / 49



SystemVerilog (Optional)

A typical ALU supporting add, sub, and, or, slt, sll, srl

It has generates Zero and oVerflow signals

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

46 / 49



Serial-to-Parallel/Parallel-to-Serial Converters

Shift registers act as serial-to-parallel converters

The input is provided serially at Sin

After N cycles, the last N inputs appear at Q0 . . . QN−1

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

47 / 49



Serial-to-Parallel/Parallel-to-Serial Converters

Shift registers act as serial-to-parallel converters

The input is provided serially at Sin

After N cycles, the last N inputs appear at Q0 . . . QN−1

Shift registers with parallel load can act in reverse

The input D0 . . . DN−1 is loaded in parallel

Takes N cycles to shift out as parallel-to-serial converter

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

48 / 49



Counters

N -bit counter composed of an adder and a resettable register

There different approaches for designing various counters

One easy way is to use an adder

On each cycle, the counter adds 1 to the value stored in the register

They are commonly used for dividing the clock frequency

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

49 / 49


