
Floating point numbers and Memory

University of South Carolina

Introduction to Computer Architecture
Fall, 2024

Mehdi Yaghouti

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

1 / 46



Fixed Point Representation

Fixed-point notation has an implied binary point

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 46



Fixed Point Representation

Fixed-point notation has an implied binary point

Decimal fraction to Binary conversion

Common negative power of two
0.5, 0.25, 0.125, 0.0625, 0.03125, · · ·
Repeated multiplication by 2

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

3 / 46



Fixed Point Representation

Fixed-point notation has an implied binary point

Decimal fraction to Binary conversion

Common negative power of two
0.5, 0.25, 0.125, 0.0625, 0.03125, · · ·
Repeated multiplication by 2

Binary to decimal conversion
(bN . . . bk�bk−1 . . . b0)2 =

∑N
i=0 2

i−kbi−k

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

4 / 46



Fixed Point Representation

Sign/Magnitude

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 46



Signed Fixed Point Representation

Sign/Magnitude

Two’s complement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

6 / 46



Signed Fixed Point Representation

Sign/Magnitude

Two’s complement

Ua.b designates an unsigned fixed-point number with a integer and b fraction bits

Qa.b designates an signed fixed-point number with a integer and b fraction bits

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

7 / 46



Fixed Point Representation

Compute 1.75 + (−1.625) using Q3.5 fixed-point numbers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 46



Floating Point Representation

Floating-point numbers are analogous to scientific notation

In general each rational number can be represented in scientific notation as,

±d0.d1d2 · · · dn−1dn × be

where b is the base (radix), e is the exponent and each digit 0 ≤ d < b

As we represent information in binary patterns, the radix is naturally taken as 2

Example:

−76510 = −101.11111012 × 27

As it can be seen the binary point can float at the expense of changing the exponent

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

9 / 46



Floating Point Representation

We call a representation normalized if there is only one digit 1 before the radix point

Example:

−76510 = −101.11111012 × 27

−76510 = −0.10111111012 × 210

−76510 = −1.0111111012 × 29

In computer representation the radix is tacitly assumed to be 2

The IEEE 754 is the widespread technical standard for floating point representation

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

10 / 46



Floating Point Representation

The IEEE 754 standard uses a normalized notation with three fields:

sign
0 for positive numbers
1 for negative numbers

biased exponent
Represents the sum of the actual exponent and a bias constant

significand (mantissa)
All bits to the right of the binary point

The 1 to the right of binary point is tacitly assumed for the sake of efficiency

Single Precision: 32 bits

Exponent Bias: 127

Double Precision: 64 bits

Exponent Bias: 1023

Quad Precision: 128 bits

Exponent Bias: 16363

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

11 / 46



Floating Point Representation

A floating-point number represented in IEEE 754 format can be calculated as,

f = (−1)S × (1 + significand)× 2exponent−bias

Which number is given by the half-precision floating-point 0XC0FF?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

12 / 46



Floating Point Representation

A floating-point number represented in IEEE 754 format can be calculated as,

f = (−1)S × (1 + significand)× 2exponent−bias

Which number is given by the half-precision floating-point 0XC0FF?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

13 / 46



Floating Point Representation

A floating-point number represented in IEEE 754 format can be calculated as,

f = (−1)S × (1 + significand)× 2exponent−bias

Which number is given by the half-precision floating-point 0XC0FF?

sign bit = 1

exponent - bias = 16− 15 = 1

significand =
∑10

k=3 2
−k = 0.249023437

f = (−1)1 × (1 + 0.249023437)× 21 = −2.498046874

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

14 / 46



Floating Point Representation

Encode the number −0.3 into 32-bits single precision format.

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

15 / 46



Floating Point Representation

Encode the number −0.3 into 32-bits single precision format.

0.310 = (0.01001100110011001100110011 · · · )2
= (1.00110011001100110011001)2 × 2−2

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

16 / 46



Floating Point Representation

Encode the number −0.3 into 32-bits single precision format.

0.3 = (0.01001100110011001100110011 · · · )2
= (1.00110011001100110011001)2 × 2−2

Sign bit = 1

Biased Exponent = 127− 2 = 125 = 011111012

Significand = 00110011001100110011001

Single Precision Representation = 1 01111101 00110011001100110011001

Single Precision Representation = 0XBE999999

Absolute error ≈ 1.8× 10−8

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

17 / 46



Floating Point Representation

Special Values

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

18 / 46



Floating Point Representation

Rounding Modes

Round to nearest: The result is rounded to the nearest representable

Overflows are rounded up to ±∞
Underflows are rounded up to 0

Round toward +∞: The result is rounded up toward plus infinity number
Round toward −∞: The result is rounded down toward minus infinity number
Round toward 0: The result is rounded toward zero

Overflow : When the number magnitude is too large to be represented

Underflow: When the number magnitude is too tiny to be represented

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

19 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

20 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand

a = 1 11100101 10100100000000000000100

b = 0 11101100 10000000111000000100000

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

21 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand

a = 1 11100101 10100100000000000000100
b = 0 11101100 10000000111000000100000

2 Add the leading 1 to significand

Sa = 1 10100100000000000000100

Sb = 1 10000000111000000100000

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

22 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand

a = 1 11100101 10100100000000000000100
b = 0 11101100 10000000111000000100000

2 Add the leading 1 to significand

Siga = 1 10100100000000000000100

Sigb = 1 10000000111000000100000
3 Compare the exponents and shift the smaller significand if necessary

11101100
−11100101

00000111

Sig′a = 000000011010010000000000

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

23 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand
2 Add the leading 1 to significand
3 Compare the exponents and shift the smaller significand if necessary

11101100
−11100101

00000111

Sig′a = 000000011010010000000000
4 Subtract or add significands together

110000000111000000100000

−000000011010010000000000

101111101100110000100000

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

24 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand
2 Add the leading 1 to significand
3 Compare the exponents and shift the smaller significand if necessary
4 Subtract or add significands together

110000000111000000100000

−000000011010010000000000

101111101100110000100000
5 Normalize and readjust the exponent

So far we have : 0 11101100 101111101100110000100000

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

25 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand
2 Add the leading 1 to significand
3 Compare the exponents and shift the smaller significand if necessary
4 Subtract or add significands together
5 Normalize and readjust the exponent

So far we have : 0 11101100 101111101100110000100000
6 Rounding the result if needed

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

26 / 46



Floating Point Addition

Add two single-precision float numbers a=0XF2D20004 and b=0X76407020.

1 Extract exponent and significand
2 Add the leading 1 to significand
3 Compare the exponents and shift the smaller significand if necessary
4 Subtract or add significands together
5 Normalize and readjust the exponent

So far we have : 0 11101100 101111101100110000100000
6 Rounding the result if needed
7 Assemble exponent and fraction back into floating-point format

By eliminating the leading one :

0 11101100 01111101100110000100000

Therefore: 0XF2D20004 + 0X76407020 = 0X763ECC20

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

27 / 46



Memory Arrays

Registers built from flip-flops, stores small amounts of data

Memory arrays can efficiently store large amounts of data

Memories all provides the same generic functionality

They differ in underlying structures, delay and area

Memory can be considered as a two dimensional array

A memory with N -bit address and M -bit data has 2N rows and M columns

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

28 / 46



Memory Arrays

Registers built from flip-flops, stores small amounts of data

Memory arrays can efficiently store large amounts of data

Memories all provides the same generic functionality

They differ in underlying structures, delay and area

Memory can be considered as a two dimensional array

A memory with N -bit address and M -bit data has 2N rows and M columns

The number of rows and columns are called depth and width of the memory

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

29 / 46



Memory Arrays

Memory arrays are built as an array of bit cells

For each combination of address bits the decoder asserts one wordline

A bit cell is connected to the bitline, only if its associated wordline is asserted

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

30 / 46



Memory Arrays

Memory read
1 Initially the bitline is float (Z)
2 The wordline gets asserted and connects the bits in the row to the bitlines

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

31 / 46



Memory Arrays

Memory Write
1 The bitlines are strongly driven to 1 or 0 depending on the data
2 The wordline gets asserted and connects the bits in the bitlines
3 The bitlines overpower the content of each bit cell and overwrite the new value

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

32 / 46



Memory Arrays

As a black box, regardless of type, each memory is a multi-ported array of bits

A Multiported memory can access several addresses simultaneously

Writing into a memory address happens on the edge of the clock

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

33 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types

RAM: is volatile
ROM: is non-volatile

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

34 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are stored in inter-coupled inverters

ROM: is non-volatile

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

35 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
The bit value will be destroyed by reading or charge leakage
The contents must be refreshed every few milliseconds

SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

36 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
The bit value will be destroyed by reading or charge leakage
The contents must be refreshed every few milliseconds

SRAM: bits are interlocked in cross-coupled inverters
Bit values do not need to be refreshed
Cross-coupling of inverters robustify them against noise

ROM: is non-volatile

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

37 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
The bit value will be destroyed by reading or charge leakage
The contents must be refreshed every few milliseconds

SRAM: bits are interlocked in cross-coupled inverters
Bit values do not need to be refreshed
Cross-coupling of inverters robustify them against noise
Trade-off between area and speed

ROM: is non-volatile

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

38 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile
bits can be stored as presence or absence of transistors
bitlines are driven weakly high
transistors with asserted wordline pull down the value to zero

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

39 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile
presence or absence of transistors can be depicted as dots

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

40 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile
PROM: Programmable ROM

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

41 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile
PROM: Programmable ROM
EPROM: Erasable Programmable ROM
Use floating gate transistors
Need high voltage to be programmed
Need intense UV to be erased

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

42 / 46



Memory Arrays

Memories differ in how they store bits in bit cells

Memory types
RAM: is volatile

DRAM: bits are stored as charge on capacitors
SRAM: bits are interlocked in cross-coupled inverters

ROM: is non-volatile
PROM: Programmable ROM
EPROM: Erasable Programmable ROM
EEPROM: Electrically Erasable Programmable ROM

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

43 / 46



Look Up Table (LUT)

Memory arrays can also be used to perform combinational logic functions

It looks up outputs for input combinations, matching addresses to truth table rows

Memory arrays used for logic functions are called lookup tables (LUTs)

A 2N -word Ö M -bit memory can perform any combinational function of N inputs
and M outputs

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

44 / 46



SystemVerilog

The following modules describes a 2N ×M − bit RAM

Writes occur at the clock edge only if the we is asserted

Reads occur in a combinational manner

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

45 / 46



SystemVerilog

The following modules describes a 2× 3− bit ROM

Reads occur with in a combinational manner

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

46 / 46


