
Architecture and Assembly Programming

University of South Carolina

Introduction to Computer Architecture
Fall, 2024

Mehdi Yaghouti

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

1 / 72

Architecture

The architecture is the programmer’s view of a CPU

The architecture is mainly defined by Instruction set and the Operand locations

Each instruction includes both the operation to perform and the necessary operands

Instructions will be eventually encoded in machine language as 0s and 1s

It is way easier to write symbolic codes in assembly language rather than 0s and 1s

Each CPU has its own specific instructions set

The instruction sets of different architectures have a lot in common

Once one instruction set is learned, understanding others is fairly straightforward

Here we are more concerned about the common concepts rather than the differences

In this course we focus on RISC-V architecture

RISC-V is the first open source architecture with broad commercial support

The architecture does not define the underlying hardware

One architecture might have several implementations

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 72

Architecture

The architecture is the programmer’s view of a CPU

The architecture is mainly defined by Instruction set and the Operand locations

Each instruction includes both the operation to perform and the necessary operands

Instructions will be eventually encoded in machine language as 0s and 1s

It is way easier to write symbolic codes in assembly language rather than 0s and 1s

Each CPU has its own specific instructions set

The instruction sets of different architectures have a lot in common

Once one instruction set is learned, understanding others is fairly straightforward

Here we are more concerned about the common concepts rather than the differences

In this course we focus on RISC-V architecture

RISC-V is the first open source architecture with broad commercial support

The architecture does not define the underlying hardware

One architecture might have several implementations

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 72

Architecture

The architecture is the programmer’s view of a CPU

The architecture is mainly defined by Instruction set and the Operand locations

Each instruction includes both the operation to perform and the necessary operands

Instructions will be eventually encoded in machine language as 0s and 1s

It is way easier to write symbolic codes in assembly language rather than 0s and 1s

Each CPU has its own specific instructions set

The instruction sets of different architectures have a lot in common

Once one instruction set is learned, understanding others is fairly straightforward

Here we are more concerned about the common concepts rather than the differences

In this course we focus on RISC-V architecture

RISC-V is the first open source architecture with broad commercial support

The architecture does not define the underlying hardware

One architecture might have several implementations

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 72

Architecture

The architecture is the programmer’s view of a CPU

The architecture is mainly defined by Instruction set and the Operand locations

Each instruction includes both the operation to perform and the necessary operands

Instructions will be eventually encoded in machine language as 0s and 1s

It is way easier to write symbolic codes in assembly language rather than 0s and 1s

Each CPU has its own specific instructions set

The instruction sets of different architectures have a lot in common

Once one instruction set is learned, understanding others is fairly straightforward

Here we are more concerned about the common concepts rather than the differences

In this course we focus on RISC-V architecture

RISC-V is the first open source architecture with broad commercial support

The architecture does not define the underlying hardware

One architecture might have several implementations

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 72

Architecture

The architecture is the programmer’s view of a CPU

The architecture is mainly defined by Instruction set and the Operand locations

Each instruction includes both the operation to perform and the necessary operands

Instructions will be eventually encoded in machine language as 0s and 1s

It is way easier to write symbolic codes in assembly language rather than 0s and 1s

Each CPU has its own specific instructions set

The instruction sets of different architectures have a lot in common

Once one instruction set is learned, understanding others is fairly straightforward

Here we are more concerned about the common concepts rather than the differences

In this course we focus on RISC-V architecture

RISC-V is the first open source architecture with broad commercial support

The architecture does not define the underlying hardware

One architecture might have several implementations

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

2 / 72

Assembly language

Assembly language is the human-readable representation of machine language

Defined by Instructions and operand locations

The operand determines the physical location from which the data must be retrieved

RISC-V Operands:

Immediate Values
Registers
Memory

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

3 / 72

Instruction Structure

Mnemonic: A symbolic abbreviation used to represent an instruction

Operands: Are the values or data on which the instruction operates

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

4 / 72

Operands

Different operand types provides a range of trade-off between speed and capacity

Constants:

Values directly embedded in the instruction itself

Registers:

Fast storage locations directly accessible by the CPU
Store small amounts of data

Memory:

Larger storage space, but slower access compared to registers
Used for additional data beyond what can be stored in registers

An architecture is called 32-bits when it operates on 32-bit data

Here we focus on 32-bit version of RISC-V (RV32I)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

5 / 72

R-Type Instructions

Some instructions have three operands

add x5, x2, x3 # x5 ← x2 + x3

sub x4, x6, x7 # x4 ← x6 - x7

and x5, x6, x8 # x5 ← x6 & x8

We call this instructions R-Type

The registers are ordered as destination, source-1 and source-2

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

6 / 72

Registers

Commonly used operands are kept in registers for faster access

RISC-V Registers set

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

7 / 72

I-Type Instructions

Some instructions have two register operands and one immediate operand

addi x3, x6, 4 # x3 ← x6 + 4

andi x5, x4, 0xA # x5 ← x4 & 0xA

slli x5, x6, 3 # x5 ← x6 << 3

We call this instructions I-Type

In these instructions the last operand is a 12-bit immediate value

The immediate value can be in given in decimal, hexadecimal or binary formats

addi x5, x2, 0xA
addi x5, x7, 0b1010

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 72

I-Type Instructions

Some instructions have two register operands and one immediate operand

addi x3, x6, 4 # x3 ← x6 + 4

andi x5, x4, 0xA # x5 ← x4 & 0xA

slli x5, x6, 3 # x5 ← x6 << 3

We call this instructions I-Type

In these instructions the last operand is a 12-bit immediate value

The immediate value can be in given in decimal, hexadecimal or binary formats

addi x5, x2, 0xA
addi x5, x7, 0b1010

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

8 / 72

Immediates

Immediate Values:

Directly available from the instruction itself
Do not require access to registers or memory

Format:

Immediates can be written in decimal, hexadecimal, or binary
Hexadecimal constants start with 0x

Binary constants start with 0b, similar to C

Representation:

Immediates are 12-bit two’s complement numbers
They are sign-extended to 32 bits

Common Usage:

The addi is used to assign a constant to a register
Example Code:
addi s5,x0,0b1101101

addi s5,x0,0x6D

addi s5,x0,109

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

9 / 72

Example

Adding two decimal values

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

10 / 72

Example

Adding two hexadecimal values

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

11 / 72

Example

Registers as local variables

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

12 / 72

lui

lui, loads 20-bit immediate into the upper part of register

lui s0, 0xABCDE # s0 ← ABCDE000

Loading constants into registers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

13 / 72

lui

lui, loads 20-bit immediate into the upper part of register

lui s0, 0xABCDE # s0 ← ABCDE000

Loading constants into registers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

13 / 72

Example

Loading constants into registers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

14 / 72

Memory

Registers and Memory:

Registers are small and fast, but limited to 32 variables
Memory provides larger storage but is slower
Frequently used variables are stored in registers for quick access

RISC-V Architecture

Instructions operate exclusively on registers
Data in memory must be moved to registers before processing
The architecture we focus on, uses 32-bit memory addresses and data words

Byte-Addressable Memory:

We take memory as byte-addressable, where each byte has a unique address

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

15 / 72

Memory Access

Only Load and Store instructions access the memory

These two instructions use base addressing mode

Base addressing mode
1 Base address is stored in a register
2 Effective memory address is formed by adding an immediate offset to the base

Load Example

addi x6, x0, 0 # x6 ← 0

lw x5, 12(x6) # x5 ← Mem[x6+12]

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

16 / 72

Load Word

Load Example

addi x6, x0, 0 # x6 ← 0

lw x5, 12(x6) # x5 ← Mem[x6+12]

x5 ← 0X40F30788

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

17 / 72

Load Half-Word

Load the sign-extended lower half of the word

addi x6, x0, 0 # x6 ← 0

lh x5, 12(x6) # x5 ← Mem[x6+12]

x5 ← 0X00000788

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

18 / 72

Load Byte

Load the sign-extended byte

addi x6, x0, 0 # x6 ← 0

lb x5, 12(x6) # x5 ← Mem[x6+12]

x5 ← 0XFFFFFF88

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

19 / 72

Save Word

Save Word example

addi x6, x0, 0

lui x5, 0x01234

ori x5, x5, 0x567

sw x5, 12(x6) # x5 → Mem[x6+12]

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

20 / 72

Save Half-Word

Save half-word example

addi x6, x0, 0

lui x5, 0x01234

ori x5, x5, 0x567

sh x5, 12(x6) # x5 → Mem[x6+12]

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

21 / 72

Save Byte

Save byte example

addi x6, x0, 0

lui x5, 0x01234

ori x5, x5, 0x567

sb x5, 12(x6) # x5 → Mem[x6+12]

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

22 / 72

Example

Memory

Memory access example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

23 / 72

Shift Example

Memory

Memory access example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

24 / 72

Jump Instruction

j is the unconditional jump instruction

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

25 / 72

Conditional Branch

beq, branch if equal

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

26 / 72

Conditional Branch

bneq, branch if not equal

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

27 / 72

Conditional Branch

bltu, branch if less than (unsigned comparison)

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

28 / 72

Conditional Branch

blt, branch if less than (signed comparison)

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

29 / 72

Conditional Branch

bgeu, branch if greater than or equal (unsigned comparison)

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

30 / 72

Conditional Branch

bge, branch if greater than or equal (signed comparison)

After executing the above code, s0 = ?

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

31 / 72

Control Flow: If statement

if statement

if/else statement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

32 / 72

Control Flow: If statement

if statement

if/else statement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

32 / 72

Control Flow: Switch statement

switch as cascaded if statements

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

33 / 72

Loops: while

while loop structure

do/while loop structure

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

34 / 72

Loops: while

while loop structure

do/while loop structure

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

34 / 72

For loop

For loop example

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

35 / 72

Array Example

Array Processing

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

36 / 72

Assembler Directives (Reference)

Assembler directives help guide the assembler

Assist in allocating and initializing global variables
Used to define constants
Assist in differentiating different memory segments

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

37 / 72

ASCII Codes

English language keyboard has fewer than 256 characters

Each character can be coded in a byte

American Standard Code for Information Interchange (ASCII) standardized this coding

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

38 / 72

Load Byte (Unsigned)

lbu, load the zero-extended byte

addi x6, x0, 0 # x6 ← 0

lbu x5, 12(x6) # x5 ← Mem[x6+12]

x5 ← 0X00000088

If we used lb we had,

x5 ← 0XFFFFFF88

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

39 / 72

Load Half-Word (Unsigned)

lhu, load the zero-extended half word

addi x6, x0, 0 # x6 ← 0

lhu x5, 4(x6) # x5 ← Mem[x6+12]

x5 ← 0X0000AC07

If we used lh we had,

x5 ← 0XFFFFAC07

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

40 / 72

Strings

Strings are null terminated byte arrays

Simple example of string processing

la load the base address of the array

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

41 / 72

System Calls (Optional)

System calls are the services provided by the system mainly for input/output purposes

To SYSCALL a system service

1 Load the service number in register a7
2 Load argument values, if any, in a0, a1, a2, a3, ... as specified.
3 Issue the ecall instruction
4 Retrieve return values, if any

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

42 / 72

Instruction set (Reference)

Arithmetic

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

43 / 72

Instruction set (Reference)

Bit Manipulation

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

44 / 72

Instruction set (Reference)

Data Transfer

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

45 / 72

Instruction set (Reference)

Branches

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

46 / 72

Summary

Operands: registers, memory and constants

Registers set

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

47 / 72

QUIZ 2

The second quiz covers material up to this slide

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

48 / 72

Registers

Zero: zero constant

Saved registers s0-s11: local variables (Saved)

Temporary registers t0-t6: local variables (Temporary)

Argument registers a0-a7: Function-call arguments

ra: return address register

sp: stack pointer

gp: global pointer

tp: thread pointer

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

49 / 72

Function Call

jal <lablename>: jump and link
1 It saves the return address into ra
2 Jumps to the first instruction after the given label

jr ra

jumps back (return) to the saved address in ra

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

50 / 72

Passing arguments/Returning result

By Convention

Arguments: a0 . . . a7
Return value: a0, (if needed) a1

The function diffofsums has unintended side effects on s3!

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

51 / 72

Stack and Stack pointer

The stack is a portion of memory used as scratchpad

By convention, the stack pointer sp always points to the current end of stack frame

The stack pointer sp starts at a high memory address and decrements as needed

Stack is used to save and restore registers that are used by a function

sp=0XBEFFFAE8, s0=0X12345678, s1=0XFFEEDDCC

addi sp, sp, -8 # expanding the stack frame by 2 words

sw s0, 4(sp) # pushing s0 into stack

sw s1, 0(sp) # pushing s1 into stack

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

52 / 72

Stack as a Scratchpad

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

53 / 72

Preserved/Temporary Registers

Caller Responsibility: Saving necessary Nonpreserved registers

Callee Responsibility: Saving Preserved registers

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

54 / 72

Caller/Callee

f1 is caller and callee

f2 is a leaf function

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

55 / 72

Programming Project (Optional)

Write an assembly program to rearrange a given array of integers

The rearrangement order is given by an array of indices

Your code will start like this

For example given the above numbers the array must be rearranged to,
12, 10, 8, 9, 5, 1, 111, 0, 34, 23

The project is optional and has extra bonus

You must upload a working assembly file and a snapshot of the result

The assembly file: rearrange.asm
Result snapshot: result.pdf

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

56 / 72

Machine Language

CPU only processes binary patterns

Assembly programs must be translated into binary codes before execution

In RISC-V architecture, each instruction is encoded as a 32-bit word

RISC-V has the following main instruction formats

R-Type: three register operands
I-Type: one source, one destination and one 12-bit immediate operands
Loads: one source, one destination and one 12-bit immediate operands
Stores: two source registers and a 12-bits immediate operands
Branches: two source registers and one 12-bits (relative) immediate operands
U/J Type: one destination register and a 20-bits immediate operands

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

57 / 72

R-Type

R-Type bit-fields

op(6:0): 0110011
funct3, funct7: Identify the operation according to the table
rd(11:7): The destination register number
rs1(19:15): The source1 register number
rs2(24:20): The source2 register number

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

58 / 72

R-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

59 / 72

R-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

59 / 72

R-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

59 / 72

R-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

59 / 72

I-Type & Loads

I-Type bit-fields

op(6:0): 0010011
funct3: Identify the operation according to the table
rd(11:7): The destination register number
rs1(19:15): The source1 register number
imm(31:20): The Immediate in Two’s complement

Load bit-fields

op(6:0): 0000011
funct3: Identify the operation according to the table
rd(11:7): The destination register number
rs1(19:15): The source1 register number
imm(31:20): The Immediate in Two’s complement

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

60 / 72

I-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

61 / 72

I-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

61 / 72

Loads (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

62 / 72

Loads (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

62 / 72

Store Instructions

Store bit-fields

op(6:0): 0100011
funct3: Identify the operation according to the table
rs1(19:15): The source1 register number
rs2(24:20): The source2 register number
imm(31:25)(11:7): 12-bits immediate

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

63 / 72

Store (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

64 / 72

Store (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

64 / 72

Store (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

64 / 72

Branch Instructions

Store bit-fields

op(6:0): 1100011
funct3: Identify the operation according to the table
rs1(19:15): The source1 register number
rs2(24:20): The source2 register number
imm(31)(7)(30:25)(11:8): 12-bit immediate

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

65 / 72

Branch (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

66 / 72

Branch (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

66 / 72

U/J-Type Instructions

U-Type bit-fields
op(6:0):

lui: 0110111

auipc: 0010111

rd(11:7): The destination register number
imm(31:12): 20-bits immediate

J-Type bit-fields
op(6:0):

jal: 1101111

rd(11:7): The destination register number
imm(31)(19:12)(20)(30:21): 21-bits immediate!

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

67 / 72

U/J-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

68 / 72

U/J-Type (Examples)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

68 / 72

Summary

Instruction types

R-Type
I-Type
Loads
Stores
Branches
U/J Type

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

69 / 72

Instruction Machine Codes (Reference)

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

70 / 72

Compiling, Assembling and Loading

Compiler: High level language → assembly language

Assembler: Assembly → machine code (obj file)

Linker: Unifies obj files + figures out addresses

Loader: Loads program into memory and excutes

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

71 / 72

Memory Map

RISC-V does not define any specific Memory Map

Operating System and I/O: Refers to the
memory-mapped regions dedicated to interacting with
input/output devices

Dynamic Data: Represents the heap section of memory
used for dynamic memory allocation

Global Data: Refers to the segment of memory where
global and static variables are stored

Text: The memory segment containing the executable
code or instructions of a program

Exception Handlers: Memory regions where routines for
handling exceptions (e.g., interrupts or system errors) are
stored

University of South Carolina (M. Y.) USC
Introduction to Computer Architecture, 2024

72 / 72

